详解基于redis实现分布式锁

前言

为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制。但是这仅仅对单机环境有效。我们实现分布式锁大概通过三种方式。

  • redis实现分布式锁
  • 数据库实现分布式锁
  • zk实现分布式锁

原理剖析

上述三种分布式锁都是通过各自为依据对各个请求进行上锁,解锁从而控制放行还是拒绝。redis锁是基于其提供的setnx命令。

setnx当且仅当key不存在。若给定key已经存在,则setnx不做任何动作。setnx是一个原子性操作。

和数据库分布式相比,因为redis内存轻量。所以redis分布式锁性能更好

实现

原理很简单。结合springboot项目我们实现一套通过注解形式对接口进行库存上锁案例进行理解

编写注解

我们编写注解。方便我们在接口上添加注解提供拦截信息

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
public @interface StockLock {

    /**
     *
     * @Description 锁key的前缀
     * @Date 15:25 2020年03月25日, 0025
     * @Param []
     * @return java.lang.String
     */
    String prefix() default "";
    /**
     *
     * @Description key的分隔符
     * @Date 15:27 2020年03月25日, 0025
     * @Param []
     * @return java.lang.String
     */
    String delimiter() default ":";
}
@Target({ElementType.PARAMETER , ElementType.METHOD , ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
public @interface StockParam {
    /*
    * @Description 组成key
    * @Date 11:11 2020年03月26日, 0026
    * @Param []
    * @return java.lang.String[]
    */
    String[] names() default {""};
}

拦截器拦截

redis分布式锁实现的关键就是拦截器的编写。上面的注解只是为了实现拦截的一个辅助。

@Around("execution(public * *(..)) && @annotation(com.ay.framework.order.redis.product.StockLock)")

通过springboot的Around进行针对StockLock注解的拦截。通过拦截我们可以获取到拦截的方法、参数、及需要的锁的参数。

我们获取到需要锁的名称这里叫做【a】之后通过redis的原子性操作对该key进行递减操作。

为了方便我们在削减库存的时候可以对库存进行更新操作。我们在递减库存前还需要借助于另一把锁。 这一把锁我们叫做【a_key】

换句话说我们接口想访问就必须获取【a】锁,拿到【a】锁需要减少库存。减少库存之前需要获取【a_key】锁。

拿到锁之后处理完逻辑之后我们需要释放对应锁。

RedisAtomicLong entityIdCounter = new RedisAtomicLong(lockKey, redisTemplate.getConnectionFactory());
    if (redisTemplate.hasKey(CoreConstants.UPDATEPRODUCTREDISLOCKKEY + lockKey)) {
        //表示lockKey的库存信息有变动。此时无法进行交易
        throw new BusinessException("库存变动。暂无法交易");
    }
    Long increment = entityIdCounter.decrementAndGet();
    if (increment >= 0) {
        try {
            Object proceed = pjp.proceed();
        } catch (Throwable throwable) {
            //所占资源需要释放回资源池
            while (!redisLock.tryGetLock(CoreConstants.UPDATEPRODUCTREDISLOCKKEY + lockKey, "")) {

            }
            //表示lockKey的库存信息有变动。此时无法进行交易
            long l = entityIdCounter.incrementAndGet();
            if (l < 1) {
                redisTemplate.opsForValue().set(lockKey,1);
            }
            redisLock.unLock(CoreConstants.UPDATEPRODUCTREDISLOCKKEY + lockKey);
            throwable.printStackTrace();
        }
    } else {
        redisTemplate.opsForValue().set(lockKey,0);
        throw new BusinessException("库存不足!无法操作");
    }

因为我们上锁就需要释放锁。但是程序在中途处理业务是发生异常导致没有走到释放锁的步骤。这个时候就导致我们的分布式锁一直被锁。俗称【死锁】。为了避免这种场景的发生。我们常常在上锁的时候给一个有效期。有效期已过自动释放锁。这个特性恰好和redis的过期策略不摩尔和。

上述提及工具

RedisLock

public Boolean tryGetLock(String key , String value) {
    return tryGetLock(key, value, -1, TimeUnit.DAYS);
}
public Boolean tryGetLock(String key , String value, Integer expire) {
    return tryGetLock(key, value, expire, TimeUnit.SECONDS);
}
public Boolean tryGetLock(String key , String value, Integer expire , TimeUnit timeUnit) {
    ValueOperations operations = redisTemplate.opsForValue();
    if (operations.setIfAbsent(key, value)) {
        //说明 redis没有该key , 换言之 加锁成功  设置过期时间防止死锁
        if (expire > 0) {
            redisTemplate.expire(key, expire, timeUnit);
        }
        return true;
    }
    return false;
}

public Boolean unLock(String key) {
    return redisTemplate.delete(key);
}

StockKeyGenerator

@Component()
@Primary
public class StockKeyGenerator implements CacheKeyGenerator {
    @Override
    public String getLockKey(ProceedingJoinPoint pjp) {
        //获取方法签名
        MethodSignature signature = (MethodSignature) pjp.getSignature();
        Method method = signature.getMethod();
        //获取方法cacheLock注解
        StockLock stockLock = method.getAnnotation(StockLock.class);
        //获取方法参数
        Object[] args = pjp.getArgs();
        Parameter[] parameters = method.getParameters();
        StringBuilder builder = new StringBuilder();
        for (int i = 0; i < parameters.length; i++) {
            StockParam stockParam = parameters[i].getAnnotation(StockParam.class);
            Object arg = args[i];
            if (arg instanceof Map) {
                Map<String, Object> temArgMap = (Map<String, Object>) arg;
                String[] names = stockParam.names();
                for (String name : names) {
                    if (builder.length() > 0) {
                        builder.append(stockLock.delimiter());
                    }
                    builder.append(temArgMap.get(name));
                }
            }

        }
        return builder.toString();
    }
}

问题分析

上面分析了一个死锁的场景,理论上出了死锁我们redis分布锁很好的解决了分布式问题。但是还是会出现问题。下面列举写小编遇到的问题。

业务处理时间>上锁过期时间

  • a线程获取到锁,开始进行业务处理需要8S
  • 在8S内,锁的有效期是5S,在锁过期后也就是第6S , b线程进入开始获取锁这个时候b是可以获取到新锁的。这个时候就是有问题的。
  • 假设b线程业务处理只需要3S , 但是因为a线程释放了锁,所以在第8S的时候虽然b线程没有释放锁,b的锁也没有过期但是这时候也没有了锁。从而导致C线程也可以进入

以上就是详解基于redis实现分布式锁的详细内容,更多关于基于redis实现分布式锁的资料请关注我们其它相关文章!

(0)

相关推荐

  • 详解redis分布式锁的这些坑

    一.白话分布式 什么是分布式,用最简单的话来说,就是为了较低单个服务器的压力,将功能分布在不同的机器上面,本来一个程序员可以完成一个项目:需求->设计->编码->测试 但是项目多的时候,一个人也扛不住,这就需要不同的人进行分工合作了 这就是一个简单的分布式协同工作了: 二.分布式锁 首先看一个问题,如果说某个环节被终止或者别侵占,就会发生不可知的事情 这就会出现,设计好的或者设计的半成品会被破坏,导致后面环节出错: 这时候,我们就需要引入分布式锁的概念: 何为分布式锁 当在分布式模型下,

  • SpringBoot之使用Redis实现分布式锁(秒杀系统)

    一.Redis分布式锁概念篇 建议直接采用Redis的官方推荐的Redisson作为redis的分布式锁 1.1.为什么要使用分布式锁 我们在开发应用的时候,如果需要对某一个共享变量进行多线程同步访问的时候,可以使用我们学到的Java多线程的18般武艺进行处理,并且可以完美的运行,毫无Bug! 注意这是单机应用,也就是所有的请求都会分配到当前服务器的JVM内部,然后映射为操作系统的线程进行处理!而这个共享变量只是在这个JVM内部的一块内存空间! 后来业务发展,需要做集群,一个应用需要部署到几台机

  • 基于Redis实现分布式锁的方法(lua脚本版)

    1.前言 在Java中,我们通过锁来避免由于竞争而造成的数据不一致问题.通常我们使用synchronized .Lock来实现.但是Java中的锁只能保证在同一个JVM进程内中可用,在跨JVM进程,例如分布式系统上则不可靠了. 2.分布式锁 分布式锁,是一种思想,它的实现方式有很多,如基于数据库实现.基于缓存(Redis等)实现.基于Zookeeper实现等等.为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件 互斥性:在任意时刻,只有一个客户端能持有锁. 不会发生死锁:即使客户端

  • php基于redis的分布式锁实例详解

    在使用分布式锁进行互斥资源访问时候,我们很多方案是采用redis的实现. 固然,redis的单节点锁在极端情况也是有问题的,假设你的业务允许偶尔的失效,使用单节点的redis锁方案就足够了,简单而且效率高. redis锁失效的情况: 客户端1从master节点获取了锁 master宕机了,存储锁的key还没来得及同步到slave节点上 slave升级为master 客户端2从新的master上获取到同一个资源的锁 于是,客户端1和客户端2同事持有了同一个资源的锁,锁的安全性被打破. 如果我们不考

  • Redis分布式锁升级版RedLock及SpringBoot实现方法

    分布式锁概览 在多线程的环境下,为了保证一个代码块在同一时间只能由一个线程访问,Java中我们一般可以使用synchronized语法和ReetrantLock去保证,这实际上是本地锁的方式.但是现在公司都是流行分布式架构,在分布式环境下,如何保证不同节点的线程同步执行呢?因此就引出了分布式锁,它是控制分布式系统之间互斥访问共享资源的一种方式. 在一个分布式系统中,多台机器上部署了多个服务,当客户端一个用户发起一个数据插入请求时,如果没有分布式锁机制保证,那么那多台机器上的多个服务可能进行并发插

  • redisson分布式锁的用法大全

    Redisson是Redis官方推荐的Java版的Redis客户端.它提供的功能非常多,此处我们只用它的分布式锁功能. 以springboot整合Redisson项目为例 添加springboot maven依赖 <dependency> <groupId>org.redisson</groupId> <artifactId>redisson-spring-boot-starter</artifactId> <version>3.15

  • 详解RedisTemplate下Redis分布式锁引发的系列问题

    自己的项目因为会一直抓取某些信息,但是本地会和线上经常一起跑,造成冲突.这其实就是我们常说的分布式集群的问题了,本地和线上的服务器构成了集群以及QPS为2的小并发(其实也不叫并发,不知道拿什么词形容?). 首先,分布式集群的问题大家都知道,会造成数据库的插入重复问题,会造成一系列的并发性问题. 解决的方式呢也大概如下几点,百度以及谷歌上都能搜到的解决方式: 1:数据库添加唯一索引 2:设计接口幂等性 3:依靠中间件使用分布式锁,而分布式锁又分为Redis和Zookeeper 由于Zookeepe

  • 利用redis实现分布式锁,快速解决高并发时的线程安全问题

    实际工作中,经常会遇到多线程并发时的类似抢购的功能,本篇描述一个简单的redis分布式锁实现的多线程抢票功能. 直接上代码.首先按照慣例,给出一个错误的示范: 我们可以看看,当20个线程一起来抢10张票的时候,会发生什么事. package com.tiger.utils; public class TestMutilThread { // 总票量 public static int count = 10; public static void main(String[] args) { sta

  • 详解Redis 分布式锁遇到的序列化问题

    场景描述 最近使用 Redis 遇到了一个类似分布式锁的场景,跟 Redis 实现分布式锁类比一下,就是释放锁失败,也就是缓存删不掉.又踩了一个 Redis 的坑-- 这是什么个情况.又是怎样排查的呢? 本文主要对此做个复盘. 问题排查 既然是释放锁有问题,那就先看看释放锁的代码吧. 释放锁 释放锁使用了 Lua 脚本,代码逻辑和 Lua 脚本如下: 释放锁示例代码 public Object release(String key, String value) { Object existedV

  • 详解基于redis实现分布式锁

    前言 为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 原理剖析 上述三种分布式锁都是通过各自为依据对各个请求进行上锁,解锁从而控制放行还是拒绝.redis锁是基于其提供的setnx命令. setnx当且仅当key不存在.若给定key已经存在,则setnx不做任何动作.setnx是一个原子

  • 详解Java如何实现基于Redis的分布式锁

    前言 单JVM内同步好办, 直接用JDK提供的锁就可以了,但是跨进程同步靠这个肯定是不可能的,这种情况下肯定要借助第三方,我这里实现用Redis,当然还有很多其他的实现方式.其实基于Redis实现的原理还算比较简单的,在看代码之前建议大家先去看看原理,看懂了之后看代码应该就容易理解了. 我这里不实现JDK的java.util.concurrent.locks.Lock接口,而是自定义一个,因为JDK的有个newCondition方法我这里暂时没实现.这个Lock提供了5个lock方法的变体,可以

  • 基于redis实现分布式锁的原理与方法

    前言 系统的不断扩大,分布式锁是最基本的保障.与单机的多线程不一样的是,分布式跨多个机器.线程的共享变量无法跨机器. 为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 今天我们介绍通过redis实现分布式锁.实际上这三种和java对比看属于一类.都是属于程序外部锁. 原理剖析 上述三种分布

  • Java基于redis实现分布式锁

    为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 实际上这三种和java对比看属于一类.都是属于程序外部锁. 原理剖析 上述三种分布式锁都是通过各自为依据对各个请求进行上锁,解锁从而控制放行还是拒绝.redis锁是基于其提供的setnx命令. setnx当且仅当key不存在.若给定key已

  • 详解基于redis实现的四种常见的限流策略

    目录 一.引言 二.固定时间窗口算法 三.滑动时间窗口算法 四.漏桶算法 五.令牌桶算法 一.引言 在web开发中功能是基石,除了功能以外运维和防护就是重头菜了.因为在网站运行期间可能会因为突然的访问量导致业务异常.也有可能遭受别人恶意攻击 所以我们的接口需要对流量进行限制.俗称的QPS也是对流量的一种描述 针对限流现在大多应该是令牌桶算法,因为它能保证更多的吞吐量.除了令牌桶算法还有他的前身漏桶算法和简单的计数算法 下面我们来看看这四种算法 二.固定时间窗口算法 固定时间窗口算法也可以叫做简单

  • SpringBoot基于Redis的分布式锁实现过程记录

    目录 一.概述 二.环境搭建 三.模拟一个库存扣减的场景 四.总结 一.概述 什么是分布式锁 在单机环境中,一般在多并发多线程场景下,出现多个线程去抢占一个资源,这个时候会出现线程同步问题,造成执行的结果没有达到预期.我们会用线程间加锁的方式,比如synchronized,lock,volatile,以及JVM并发包中提供的其他工具类去处理此问题. 但是随着技术的发展,分布式系统的出现,各个应用服务都部署在不同节点,由各自的JVM去操控,资源已经不是在 线程 之间的共享,而是变成了 进程 之间的

  • 基于Redis实现分布式锁以及任务队列

    一.前言 双十一刚过不久,大家都知道在天猫.京东.苏宁等等电商网站上有很多秒杀活动,例如在某一个时刻抢购一个原价1999现在秒杀价只要999的手机时,会迎来一个用户请求的高峰期,可能会有几十万几百万的并发量,来抢这个手机,在高并发的情形下会对数据库服务器或者是文件服务器应用服务器造成巨大的压力,严重时说不定就宕机了,另一个问题是,秒杀的东西都是有量的,例如一款手机只有10台的量秒杀,那么,在高并发的情况下,成千上万条数据更新数据库(例如10台的量被人抢一台就会在数据集某些记录下 减1),那次这个

  • Java基于redis实现分布式锁代码实例

    为什么会有这个需求: 例如一个简单用户的操作,一个线程去修改用户状态,首先在在内存中读出用户的状态,然后在内存中进行修改,然后在存到数据库中.在单线程中,这是没有问题的.但是在多线程中由于读取,修改,写入是三个操作,不是原子操作(同时成功或失败),因此在多线程中会存在数据的安全性问题. 这个问题的话,就可以用分布式锁在限制程序的并发执行. 实现思路: 就是进来一个先占位,当别的线程进来操作的时候,发现有人占位了,就会放弃或者稍后再试. 占位的实现: 在redis中的setnx命令来实现,redi

随机推荐