使用Python NumPy库绘制渐变图案

目录
  • 1. 导入模块
  • 2. 基本绘画流程
  • 3. 生成随机彩色图像
  • 4. 生成渐变色图像
  • 5. 在渐变色背景上画曲线
  • 6. 使用颜色映射(ColorMap)
  • 7. 展示NumPy的魅力

NumPy也可以画图吗?当然!NumPy不仅可以画,还可以画得更好、画得更快!比如下面这幅画,只需要10行代码就可以画出来。若能整明白这10行代码,就意味着叩开了NumPy的大门。请打开你的Python IDLE,跟随我的脚步,一起来体验一下交互式编程的乐趣吧,看看如何用NumPy画图,以及用NumPy可以画出什么样的图画来。

1. 导入模块

仅导入NumPy就可以完成绘画过程,PIL的Image模块只是用来显示或者保存绘画结果。若能邀请Matplotlib的ColorMap来帮忙的话,处理颜色就会轻松很多,色彩也会更丰富,但这并不意味着ColorMap是必需的。

>>> import numpy as np
>>> from PIL import Image
>>> from matplotlib import cm as mplcm

2. 基本绘画流程

借助于Image.fromarray()函数,可以将NumPy生成的数组转为PIL对象。PIL对象的show()方法可以直接显示图像,save()方法则可以将图像保存为文件。这一系列的操作过程中,有一个非常关键的知识点:NumPy数组的类型必须是单字节无符号整型,即np.uint8或np.ubyte类型。下面的代码使用NumPy的随机子模块random生成了100行300列的二维数组,转换为宽300像素高100像素的随机灰度图并直接显示出来。

>>> im = np.random.randint(0, 255, (100,300), dtype=np.uint8)
>>> im = Image.fromarray(im)
>>> im.show() # 或者im.save(r'd:\gray_300_100.jpg')保存为文件

3. 生成随机彩色图像

上面的代码中,如果random生成的数组包含3个通道,就会得到一幅彩色的随机图像。

>>> im = np.random.randint(0, 255, (100,300,3), dtype=np.uint8)
>>> Image.fromarray(im, mode='RGB').show()

4. 生成渐变色图像

np.linspace()函数类似于Python的range()函数,返回的是浮点数的等差序列,经过np.tile()重复之后,分别生成RGB通道的二维数组,再用np.dstack()合并成三维数组,最终输出一幅渐变色图像。

>>> r = np.tile(np.linspace(192,255, 300, dtype=np.uint8), (600,1)).T
>>> g = np.tile(np.linspace(192,255, 600, dtype=np.uint8), (300,1))
>>> b = np.ones((300,600), dtype=np.uint8)*224
>>> im = np.dstack((r,g,b))
>>> Image.fromarray(im, mode='RGB').show()

5. 在渐变色背景上画曲线

对图像数组中的特定行列定位之后,再修改其颜色,就可以得到期望的结果。

>>> r = np.tile(np.linspace(192,255, 300, dtype=np.uint8), (600,1)).T
>>> g = np.tile(np.linspace(192,255, 600, dtype=np.uint8), (300,1))
>>> b = np.ones((300,600), dtype=np.uint8)*224
>>> im = np.dstack((r,g,b))
>>> x = np.arange(600)
>>> y = np.sin(np.linspace(0, 2*np.pi, 600))
>>> y = np.int32((y+1)*0.9*300/2 + 0.05*300)
>>> for i in range(0, 150, 6):
	im[y[:-i],(x+i)[:-i]] = np.array([255,0,255])

>>> Image.fromarray(im, mode='RGB').show()

6. 使用颜色映射(ColorMap)

颜色映射(ColorMap)是数据可视化必不可少的概念,枯燥无趣的数据正是经过颜色映射之后才变得五颜六色、赏心悦目的。Matplotlib的cm子模块提供了7大类共计82种颜色映射表,每种映射表名字之后附加“_r” ,可以获得该映射表的反转版本。

下面是专属定制类中jet颜色映射表和分段阶梯类中Paired颜色映射表的色带图。

Matplotlib的cm子模块使用起来也非常简单。下面的代码有助于理解颜色映射(ColorMap)的机制、熟悉cm对象的使用方法。

>>> cm1 = mplcm.get_cmap('jet') # jet是专属定制类的ColorMap
>>> cm1.N # jet有256种颜色
256
>>> cm1(0) # 返回序号为0的颜色
(0.0, 0.0, 0.5, 1.0)
>>> cm1(128) # 返回序号为128的颜色
(0.4901960784313725, 1.0, 0.4775458570524984, 1.0)
>>> cm1(255) # 返回序号为255的颜色
(0.5, 0.0, 0.0, 1.0)
>>> cm2 = mplcm.get_cmap('Paired') # Paired是分段阶梯类的ColorMap
>>> cm2.N # Paired有12种颜色
12
>>> cm2(0) # 返回序号为0的颜色
(0.6509803921568628, 0.807843137254902, 0.8901960784313725, 1.0)
>>> cm2(11) # 返回序号为11的颜色
(0.6941176470588235, 0.34901960784313724, 0.1568627450980392, 1.0)

7. 展示NumPy的魅力

对于一幅图像(假如图像有9个像素宽7个像素高),可以很容易地得到由每个像素的行号组成的二维数组(以i表示),以及由每个像素的列号组成的二维数组(以j表示)。

>>> w, h = 9, 7
>>> i = np.repeat(np.arange(h), w).reshape(h, w)
>>> j = np.tile(np.arange(w), (h,1))
>>> i
array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
       [1, 1, 1, 1, 1, 1, 1, 1, 1],
       [2, 2, 2, 2, 2, 2, 2, 2, 2],
       [3, 3, 3, 3, 3, 3, 3, 3, 3],
       [4, 4, 4, 4, 4, 4, 4, 4, 4],
       [5, 5, 5, 5, 5, 5, 5, 5, 5],
       [6, 6, 6, 6, 6, 6, 6, 6, 6]])
>>> j
array([[0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8]])

稍加变换,就得到各个像素在以图像中心点为原点的平面直角坐标系里的坐标。

>>> i = i - h//2
>>> j = j - w//2
>>> i
array([[-3, -3, -3, -3, -3, -3, -3, -3, -3],
       [-2, -2, -2, -2, -2, -2, -2, -2, -2],
       [-1, -1, -1, -1, -1, -1, -1, -1, -1],
       [ 0,  0,  0,  0,  0,  0,  0,  0,  0],
       [ 1,  1,  1,  1,  1,  1,  1,  1,  1],
       [ 2,  2,  2,  2,  2,  2,  2,  2,  2],
       [ 3,  3,  3,  3,  3,  3,  3,  3,  3]])
>>> j
array([[-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4]])

自然,也很容易计算出每个像素距离图像中心的距离数组(以d表示)。下面的代码使用np.hypot()函数完成距离计算,如果先求平方和再开平方,也没有问题,只是不够酷而已。

>>> d = np.hypot(i, j)
>>> d
array([[5.        , 4.24264069, 3.60555128, 3.16227766, 3.        ,
        3.16227766, 3.60555128, 4.24264069, 5.        ],
       [4.47213595, 3.60555128, 2.82842712, 2.23606798, 2.        ,
        2.23606798, 2.82842712, 3.60555128, 4.47213595],
       [4.12310563, 3.16227766, 2.23606798, 1.41421356, 1.        ,
        1.41421356, 2.23606798, 3.16227766, 4.12310563],
       [4.        , 3.        , 2.        , 1.        , 0.        ,
        1.        , 2.        , 3.        , 4.        ],
       [4.12310563, 3.16227766, 2.23606798, 1.41421356, 1.        ,
        1.41421356, 2.23606798, 3.16227766, 4.12310563],
       [4.47213595, 3.60555128, 2.82842712, 2.23606798, 2.        ,
        2.23606798, 2.82842712, 3.60555128, 4.47213595],
       [5.        , 4.24264069, 3.60555128, 3.16227766, 3.        ,
        3.16227766, 3.60555128, 4.24264069, 5.        ]])

设想一下,如果想将不同的距离使用jet颜色映射表映射为不同的颜色,图像是什么样子呢?如果再选取图像中的某个特定区域,比如列号的平方小于10倍行号的全部像素,将选中区域各个点的距离使用Paired颜色映射表映射为不同的颜色,图像又会变成什么样子呢?下面用10行代码实现了这一切。

>>> def draw_picture(w, h, cm1='jet', cm2='Paired'):
	cm1, cm2 = mplcm.get_cmap(cm1), mplcm.get_cmap(cm2)
	colormap1, colormap2 = np.array([cm1(k) for k in range(cm1.N)]), np.array([cm2(k) for k in range(cm2.N)])
	i, j = np.repeat(np.arange(h),w).reshape(h,w)-h//2, np.tile(np.arange(w), (h,1))-w//2
	d = np.hypot(i, j)
	e = d[(j*j/10)<i]
	d = np.int32((cm1.N-1)*(d-d.min())/(d.max()-d.min()))
	d = np.uint8(255*colormap1[d])
	e = np.int32((cm2.N-1)*(e-e.min())/(e.max()-e.min()))
	d[(j*j/10)<i] = np.uint8(255*colormap2[e])
	Image.fromarray(d).show()

>>> draw_picture(1200, 900, cm1='jet', cm2='Paired')

运行上面的这段代码,你就会看到本文开头所展示的那幅图画。这就是使用NumPy绘画的核心技巧,融会贯通之后,相信你也能够绘制出更漂亮、更绚丽的作品来。 

以上就是使用Python NumPy库绘制渐变图案的详细内容,更多关于Python NumPy绘制渐变图案的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python Numpy,mask图像的生成详解

    什么是掩膜(mask) 在numpy中,有一个模块叫做ma,这个模块几乎复制了numpy里面的所有函数,当然底层里面都换成了对自己定义的新的数据类型MaskedArray的操作. 我们来看最基本的array定义. An array class with possibly masked values. Masked values of True exclude the corresponding element from any computation. MaskedArray是一个可能带有掩膜信

  • Python编程利用Numpy和PIL库将图片转化为手绘

    目录 主要采用的技术点 读取图片,转化为数组 计算 x,y,z 轴梯度值,归一化 加入光源效果 导出图片,并保存 主要采用的技术点 Python + Numpy + PIL 在正文代码开始前,大家先看看最初原图和转换手绘风图片前后对比. 当然了,我先查了手绘的三个基本特点: 图片可单通道灰度图 边缘线条较重可当成黑色,相同或相近像素值趋向白色 光源效果下,灰度变化类似于人类视觉的远近 下面开始介绍,手绘照实现步骤: 读取图片,转化为数组 因为要对图像的像素计算,可以先把图片先转化为数组.代码如下

  • python numpy 显示图像阵列的实例

    每次要显示图像阵列的时候,使用自带的 matplotlib 或者cv2 都要设置一大堆东西,subplot,fig等等,突然想起 可以利用numpy 的htstack() 和 vstack() 将图片对接起来组成一张新的图片.因此写了写了下面的函数.做了部分注释,一些比较绕的地方可以自行体会. 大致流程包括: 1.输入图像列表 img_list 2.show_type : 最终的显示方式,输入为行数列数 (例如 show_type=22 ,则最终显示图片为两行两列) 3.basic_shape,

  • Python+matplotlib+numpy绘制精美的条形统计图

    本文实例主要向大家分享了一个Python+matplotlib+numpy绘制精美的条形统计图的代码,效果展示如下: 完整代码如下: import matplotlib.pyplot as plt from numpy import arange from numpy.random import rand def gbar(ax, x, y, width=0.5, bottom=0): X = [[.6, .6], [.7, .7]] for left, top in zip(x, y): ri

  • Python使用Numpy模块读取文件并绘制图片

    代码如下 import pandas as pd import matplotlib.pyplot as plt import numpy as np data = np.loadtxt('distance.txt',dtype = np.int) print(data) x = data[:,0] # 设置第1列数据为x轴数据. y = np.log(data[:,1]) # 设置第2列为y轴数据,计算自然对数后赋值给y, 注意如果取以10为底的对数,则需要使用log10方法. print(x

  • 使用Python NumPy库绘制渐变图案

    目录 1. 导入模块 2. 基本绘画流程 3. 生成随机彩色图像 4. 生成渐变色图像 5. 在渐变色背景上画曲线 6. 使用颜色映射(ColorMap) 7. 展示NumPy的魅力 NumPy也可以画图吗?当然!NumPy不仅可以画,还可以画得更好.画得更快!比如下面这幅画,只需要10行代码就可以画出来.若能整明白这10行代码,就意味着叩开了NumPy的大门.请打开你的Python IDLE,跟随我的脚步,一起来体验一下交互式编程的乐趣吧,看看如何用NumPy画图,以及用NumPy可以画出什么

  • 利用Python NumPy库及Matplotlib库绘制数学函数图像

    目录 前言 NumPy与Matplotlib 函数绘图 所需库函数语法 导入所需模块 一元一次函数 一元二次函数 指数函数 正弦函数 余弦函数 高级玩法 总结 前言 最近开始学习数学了,有一些题目的函数图像非常有特点,有一些函数图像手绘比较麻烦,那么有没有什么办法做出又标准又好看的数学函数图像呢? 答案是有很多的,有很多不错的软件都能画出函数图像,但是,我想到了Python的数据可视化.Python在近些年非常火热,在数据分析以及深度学习等方面得到广泛地运用,其丰富的库使其功能愈加强大. 这里我

  • 使用python matploblib库绘制准确率,损失率折线图

    我就废话不多说了,大家还是直接看代码吧~ import matplotlib.pyplot as plt epochs = [0,1,2,3] acc = [4,8,6,5] loss = [3,2,1,4] plt.plot(epochs,acc,color='r',label='acc') # r表示红色 plt.plot(epochs,loss,color=(0,0,0),label='loss') #也可以用RGB值表示颜色 #####非必须内容######### plt.xlabel(

  • Python Numpy库安装与基本操作示例

    本文实例讲述了Python Numpy库安装与基本操作.分享给大家供大家参考,具体如下: 概述 NumPy(Numeric Python)扩展包提供了数组功能,以及对数据进行快速处理的函数. NumPy 通常与 SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用. 安装 通过pip安装numpy pip install numpy Numpy基本操作 >>> import numpy as np #一般以np作为numpy的别名 >>&

  • Python turtle库绘制菱形的3种方式小结

    绘制一个菱形四边形,边长为 200 像素.方法1和2绘制了内角为60和120度的菱形,方法3绘制了内角为90度的菱形. 方法1‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‮‬‫ import turtle as t ls = [30,-30,-150,150]#菱形各边的画笔绝对角度列表 for i in range(4): t.seth(ls[i]) #画笔转向相应绝对角度 t.forward(2

  • Python Numpy库常见用法入门教程

    本文实例讲述了Python Numpy库常见用法.分享给大家供大家参考,具体如下: 1.简介 Numpy是一个常用的Python科学技术库,通过它可以快速对数组进行操作,包括形状操作.排序.选择.输入输出.离散傅立叶变换.基本线性代数,基本统计运算和随机模拟等.许多Python库和科学计算的软件包都使用Numpy数组作为操作对象,或者将传入的Python数组转化为Numpy数组,因此在Python中操作数据离不开Numpy. Numpy的核心是ndarray对象,由Python的n维数组封装而来

  • python numpy库linspace相同间隔采样的实现

    linspace可以用来实现相同间隔的采样: numpy.linspace(start,stop,num=50,endpoint=True,retstep=False, dtype=None) 返回num均匀分布的样本,在[start, stop]. Parameters(参数): start : scalar(标量) The starting value of the sequence(序列的起始点). stop : scalar 序列的结束点,除非endpoint被设置为False,在这种情

  • python numpy库np.percentile用法说明

    在python中计算一个多维数组的任意百分比分位数,此处的百分位是从小到大排列,只需用np.percentile即可-- a = range(1,101) #求取a数列第90%分位的数值 np.percentile(a, 90) Out[5]: 90.10000000000001 a = range(101,1,-1) #百分位是从小到大排列 np.percentile(a, 90) Out[7]: 91.10000000000001 详看官方文档 numpy.percentile Parame

  • Python tkinter库绘制春联和福字的示例详解

    马上要过年了,用 Python 写一副春联&福字送给大家,本文我们主要用到的 Python 库为 tkinter,下面一起来看一下具体实现. 首先,我们创建一个画布,代码实现如下: root=Tk() root.title('新年快乐') canvas=Canvas(root,width=500,height=460,bg='lightsalmon') 看一下效果: 我们接着写上联,主要代码实现如下: for i in range(0,451): canvas.create_rectangle(

  • Python Numpy库的超详细教程

    1.Numpy概述 1.1 概念 Python本身含有列表和数组,但对于大数据来说,这些结构是有很多不足的.由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.对于数值运算来说这种 结构比较浪费内存和CPU资源.至于数组对象,它可以直接保存 数值,和C语言的一维数组比较类似.但是由于它不支持多维,在上面的函数也不多,因此也不适合做数值运算.Numpy提供了两种基本的对象:ndarray(N-dimensional Array Object)和 ufunc(Universal Funct

随机推荐