pytorch中使用cuda扩展的实现示例

以下面这个例子作为教程,实现功能是element-wise add;

(pytorch中想调用cuda模块,还是用另外使用C编写接口脚本)

第一步:cuda编程的源文件和头文件

// mathutil_cuda_kernel.cu
// 头文件,最后一个是cuda特有的
#include <curand.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
#include "mathutil_cuda_kernel.h"

// 获取GPU线程通道信息
dim3 cuda_gridsize(int n)
{
  int k = (n - 1) / BLOCK + 1;
  int x = k;
  int y = 1;
  if(x > 65535) {
    x = ceil(sqrt(k));
    y = (n - 1) / (x * BLOCK) + 1;
  }
  dim3 d(x, y, 1);
  return d;
}
// 这个函数是cuda执行函数,可以看到细化到了每一个元素
__global__ void broadcast_sum_kernel(float *a, float *b, int x, int y, int size)
{
  int i = (blockIdx.x + blockIdx.y * gridDim.x) * blockDim.x + threadIdx.x;
  if(i >= size) return;
  int j = i % x; i = i / x;
  int k = i % y;
  a[IDX2D(j, k, y)] += b[k];
}

// 这个函数是与c语言函数链接的接口函数
void broadcast_sum_cuda(float *a, float *b, int x, int y, cudaStream_t stream)
{
  int size = x * y;
  cudaError_t err;

  // 上面定义的函数
  broadcast_sum_kernel<<<cuda_gridsize(size), BLOCK, 0, stream>>>(a, b, x, y, size);

  err = cudaGetLastError();
  if (cudaSuccess != err)
  {
    fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
    exit(-1);
  }
}
#ifndef _MATHUTIL_CUDA_KERNEL
#define _MATHUTIL_CUDA_KERNEL

#define IDX2D(i, j, dj) (dj * i + j)
#define IDX3D(i, j, k, dj, dk) (IDX2D(IDX2D(i, j, dj), k, dk))

#define BLOCK 512
#define MAX_STREAMS 512

#ifdef __cplusplus
extern "C" {
#endif

void broadcast_sum_cuda(float *a, float *b, int x, int y, cudaStream_t stream);

#ifdef __cplusplus
}
#endif

#endif

第二步:C编程的源文件和头文件(接口函数)

// mathutil_cuda.c
// THC是pytorch底层GPU库
#include <THC/THC.h>
#include "mathutil_cuda_kernel.h"

extern THCState *state;

int broadcast_sum(THCudaTensor *a_tensor, THCudaTensor *b_tensor, int x, int y)
{
  float *a = THCudaTensor_data(state, a_tensor);
  float *b = THCudaTensor_data(state, b_tensor);
  cudaStream_t stream = THCState_getCurrentStream(state);

  // 这里调用之前在cuda中编写的接口函数
  broadcast_sum_cuda(a, b, x, y, stream);

  return 1;
}
int broadcast_sum(THCudaTensor *a_tensor, THCudaTensor *b_tensor, int x, int y);

第三步:编译,先编译cuda模块,再编译接口函数模块(不能放在一起同时编译)

nvcc -c -o mathutil_cuda_kernel.cu.o mathutil_cuda_kernel.cu -x cu -Xcompiler -fPIC -arch=sm_52
import os
import torch
from torch.utils.ffi import create_extension

this_file = os.path.dirname(__file__)

sources = []
headers = []
defines = []
with_cuda = False

if torch.cuda.is_available():
  print('Including CUDA code.')
  sources += ['src/mathutil_cuda.c']
  headers += ['src/mathutil_cuda.h']
  defines += [('WITH_CUDA', None)]
  with_cuda = True

this_file = os.path.dirname(os.path.realpath(__file__))

extra_objects = ['src/mathutil_cuda_kernel.cu.o']  # 这里是编译好后的.o文件位置
extra_objects = [os.path.join(this_file, fname) for fname in extra_objects]

ffi = create_extension(
  '_ext.cuda_util',
  headers=headers,
  sources=sources,
  define_macros=defines,
  relative_to=__file__,
  with_cuda=with_cuda,
  extra_objects=extra_objects
)

if __name__ == '__main__':
  ffi.build()

第四步:调用cuda模块

from _ext import cuda_util #从对应路径中调用编译好的模块

a = torch.randn(3, 5).cuda()
b = torch.randn(3, 1).cuda()
mathutil.broadcast_sum(a, b, *map(int, a.size()))

# 上面等价于下面的效果:

a = torch.randn(3, 5)
b = torch.randn(3, 1)
a += b

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch查看torch.Tensor和model是否在CUDA上的实例

    今天训练faster R-CNN时,发现之前跑的很好的程序(是指在运行程序过程中,显卡利用率能够一直维持在70%以上),今天看的时候,显卡利用率很低,所以在想是不是我的训练数据torch.Tensor或者模型model没有加载到GPU上训练,于是查找如何查看tensor和model所在设备的命令. import torch import torchvision.models as models model=models.vgg11(pretrained=False) print(next(mod

  • 浅谈pytorch、cuda、python的版本对齐问题

    在使用深度学习模型训练的过程中,工具的准备也算是一个良好的开端吧.熟话说完事开头难,磨刀不误砍柴工,先把前期的问题搞通了,能为后期节省不少精力. 以pytorch工具为例: pytorch版本为1.0.1,自带python版本为3.6.2 服务器上GPU的CUDA_VERSION=9000 注意:由于GPU上的CUDA_VERSION为9000,所以至少要安装cuda版本>=9.0,虽然cuda=7.0~8.0也能跑,但是一开始可能会遇到各种各样的问题,本人cuda版本为10.0,安装cuda的

  • pytorch中使用cuda扩展的实现示例

    以下面这个例子作为教程,实现功能是element-wise add: (pytorch中想调用cuda模块,还是用另外使用C编写接口脚本) 第一步:cuda编程的源文件和头文件 // mathutil_cuda_kernel.cu // 头文件,最后一个是cuda特有的 #include <curand.h> #include <stdio.h> #include <math.h> #include <float.h> #include "math

  • PyTorch中的C++扩展实现

    今天要聊聊用 PyTorch 进行 C++ 扩展. 在正式开始前,我们需要了解 PyTorch 如何自定义module.这其中,最常见的就是在 python 中继承torch.nn.Module,用 PyTorch 中已有的 operator 来组装成自己的模块.这种方式实现简单,但是,计算效率却未必最佳,另外,如果我们想实现的功能过于复杂,可能 PyTorch 中那些已有的函数也没法满足我们的要求.这时,用 C.C++.CUDA 来扩展 PyTorch 的模块就是最佳的选择了. 由于目前市面上

  • PyTorch中的CUDA的操作方法

    目录 前言 一.常见CPU和GPU操作命令 二.CPU和GPU设备上的Tensor 1.Tensor从CPU拷贝到GPU上 2.直接在GPU上创建Tensor 3.CUDA Streams 三.固定缓冲区 四.自动设备感知 1.适配CPU和GPU设备 2.模型迁移到GPU设备 前言 CUDA(Compute Unified Device Architecture)是NVIDIA推出的异构计算平台,PyTorch中有专门的模块torch.cuda来设置和运行CUDA相关操作.本地安装环境为Wind

  • PyTorch中常用的激活函数的方法示例

    神经网络只是由两个或多个线性网络层叠加,并不能学到新的东西,简单地堆叠网络层,不经过非线性激活函数激活,学到的仍然是线性关系. 但是加入激活函数可以学到非线性的关系,就具有更强的能力去进行特征提取. 构造数据 import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt x = torch.linspace(-5, 5, 200) #

  • pytorch中[..., 0]的用法说明

    在看程序的时候看到了x[-, 0]的语句不是很理解,后来自己做实验略微了解,以此记录方便自己查看. b=torch.Tensor([[[[10,2],[4,5],[7,8]],[[1,2],[4,5],[7,8]]]]) print(b.size()) (1, 2, 3, 2) print(b[-,0]) tensor([[[10., 4., 7.], [ 1., 4., 7.]]]) print(b[-,0].size()) (1, 2, 3) print(b[-,2]) Traceback

  • PyTorch 中的傅里叶卷积实现示例

    卷积 卷积在数据分析中无处不在.几十年来,它们一直被用于信号和图像处理.最近,它们成为现代神经网络的重要组成部分.如果你处理数据的话,你可能会遇到错综复杂的问题. 数学上,卷积表示为: 尽管离散卷积在计算应用程序中更为常见,但在本文的大部分内容中我将使用连续形式,因为使用连续变量来证明卷积定理(下面讨论)要容易得多.之后,我们将回到离散情况,并使用傅立叶变换在 PyTorch 中实现它.离散卷积可以看作是连续卷积的近似,其中连续函数离散在规则网格上.因此,我们不会为这个离散的案例重新证明卷积定理

  • PyTorch中Tensor的数据统计示例

    张量范数:torch.norm(input, p=2) → float 返回输入张量 input 的 p 范数 举个例子: >>> import torch >>> a = torch.full([8], 1) >>> b = a.view(2, 4) >>> c = a.view(2, 2, 2) >>> a.norm(1), b.norm(1), c.norm(1) # 求 1- 范数 (tensor(8.),

  • PyTorch中clone()、detach()及相关扩展详解

    clone() 与 detach() 对比 Torch 为了提高速度,向量或是矩阵的赋值是指向同一内存的,这不同于 Matlab.如果需要保存旧的tensor即需要开辟新的存储地址而不是引用,可以用 clone() 进行深拷贝, 首先我们来打印出来clone()操作后的数据类型定义变化: (1). 简单打印类型 import torch a = torch.tensor(1.0, requires_grad=True) b = a.clone() c = a.detach() a.data *=

  • pytorch中Parameter函数用法示例

    目录 用法介绍 代码介绍 用法介绍 pytorch中的Parameter函数可以对某个张量进行参数化.它可以将不可训练的张量转化为可训练的参数类型,同时将转化后的张量绑定到模型可训练参数的列表中,当更新模型的参数时一并将其更新. torch.nn.parameter.Parameter data (Tensor):表示需要参数化的张量 requires_grad (bool, optional):表示是否该张量是否需要梯度,默认值为True 代码介绍  pytorch中的Parameter函数具

  • pytorch中nn.Flatten()函数详解及示例

    torch.nn.Flatten(start_dim=1, end_dim=- 1) 作用:将连续的维度范围展平为张量. 经常在nn.Sequential()中出现,一般写在某个神经网络模型之后,用于对神经网络模型的输出进行处理,得到tensor类型的数据. 有俩个参数,start_dim和end_dim,分别表示开始的维度和终止的维度,默认值分别是1和-1,其中1表示第一维度,-1表示最后的维度.结合起来看意思就是从第一维度到最后一个维度全部给展平为张量.(注意:数据的维度是从0开始的,也就是

随机推荐