MySQL多层级结构-树搜索介绍

基本上在每个系统中都有那么几张表是自关联父子关系的结构。往往有很多人都是使用pid来做关联。在刚进入IT行业时使用CAKEPHP框架编写WEB的时候,使用它里面的一个ACL plugin实现权限管理的时候。发现一个表结构硬是不明白是怎么回事。具体表结构如下:

CREATE TABLE acos (
 id INTEGER(10) UNSIGNED NOT NULL AUTO_INCREMENT,
 parent_id INTEGER(10) DEFAULT NULL,
 model VARCHAR(255) DEFAULT '',
 foreign_key INTEGER(10) UNSIGNED DEFAULT NULL,
 alias VARCHAR(255) DEFAULT '',
 lft INTEGER(10) DEFAULT NULL,
 rght INTEGER(10) DEFAULT NULL,
 PRIMARY KEY (id)
);

我们可以看到上面 acos 表用有lft、rght这两个字段。起初我根本就不明白这两个是做什么用的,几次直接修改数据导致数据错乱。

1.2. 原理解释

其实这就是树的后续遍历的每个节点的左值、右值。如下图表示:

1.3. 树的使用(引用上图树结构)

构造数据

DROP TABLE IF EXISTS comment;
CREATE TABLE `comment` (
 `comment_id` int(11) DEFAULT NULL,
 `left_num` int(11) DEFAULT NULL,
 `right_num` int(11) DEFAULT NULL
);

INSERT INTO `comment` VALUES
 (1,1,14),
 (2,2,5),
 (3,3,4),
 (4,6,13),
 (5,7,8),
 (6,9,12),
 (7,10,11);

CREATE INDEX idx$comment$left_num$right_num ON `comment` (`left_num`, `right_num`);

查找 '节点4' 的所有子节点

思路:我们只要查找出 节点左值在 '节点4' 左值和右值之间的节点
通俗说法:能被 '节点4' 包住的节点,通过左节点和右节点来判断是否被 '节点4' 包住。

-- 获得 '节点4' 孩子
SELECT c.*
FROM comment AS p, comment AS c
WHERE c.left_num BETWEEN p.left_num AND p.right_num
 AND p.comment_id = 4;
+------------+----------+-----------+
| comment_id | left_num | right_num |
+------------+----------+-----------+
|     4 |    6 |    13 |
|     5 |    7 |     8 |
|     6 |    9 |    12 |
|     7 |    10 |    11 |
+------------+----------+-----------+

查找 '节点6' 的所有父节点
思路: 找出 左值小于 '节点6' 并且 右值大于 '节点6' 的节点。
通俗说法: 找出那个节点能将 '节点6' 给包住。

-- 获得 '节点6' 父亲
SELECT p.*
FROM comment AS p, comment AS c
WHERE c.left_num BETWEEN p.left_num AND p.right_num
 AND c.comment_id = 6;
+------------+----------+-----------+
| comment_id | left_num | right_num |
+------------+----------+-----------+
|     1 |    1 |    14 |
|     4 |    6 |    13 |
|     6 |    9 |    12 |
+------------+----------+-----------+

计算 '节点4' 的深度
如果是MySQL5.7 需要修改sql_mode

SET SESSION sql_mode = 'STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION';
SELECT c.*,
 COUNT(c.comment_id) AS depth
FROM comment AS p, comment AS c
WHERE c.left_num BETWEEN p.left_num AND p.right_num
 AND c.comment_id = 4
GROUP BY c.comment_id;
+------------+----------+-----------+-------+
| comment_id | left_num | right_num | depth |
+------------+----------+-----------+-------+
|     4 |    6 |    13 |   2 |
+------------+----------+-----------+-------+

获取 '节点4' 的所有子节点, 和相关深度

SELECT sub_child.*,
 (COUNT(sub_parent.comment_id) - 1) AS depth
FROM (
 SELECT child.*
 FROM comment AS parent, comment AS child
 WHERE child.left_num BETWEEN parent.left_num AND parent.right_num
  AND parent.comment_id = 4
) AS sub_child, (
 SELECT child.*
 FROM comment AS parent, comment AS child
 WHERE child.left_num BETWEEN parent.left_num AND parent.right_num
  AND parent.comment_id = 4
) AS sub_parent
WHERE sub_child.left_num BETWEEN sub_parent.left_num AND sub_parent.right_num
GROUP BY sub_child.comment_id
ORDER BY sub_child.left_num;
+------------+----------+-----------+-------+
| comment_id | left_num | right_num | depth |
+------------+----------+-----------+-------+
|     4 |    6 |    13 |   0 |
|     5 |    7 |     8 |   1 |
|     6 |    9 |    12 |   1 |
|     7 |    10 |    11 |   2 |
+------------+----------+-----------+-------+

插入数据
数据的插入是一件相当麻烦的事,需要更新节点的所有父节点的右值和和所有孩子节点的 '左值、右值'
如上图,如果我们想为 '节点4' 添加一个孩子 '节点44'(为了不给自己挖坑,我们将添加的孩子放在父节点的最左边),就是将 '节点44' 放在 '节点5' 的左边。如下图:

最终我们获得的结果,如下图:

上图 '紫色' 的是节点需要变更的左值和右值,'绿色' 的是新增节点的值。
更新思路:
1、将左值大于 '节点4' 的左值的节点的左值 加2。
2、将右值大于 '节点4' 的左值的节点的右值 加2。

-- 获得 '节点4' 和 '节点4'的第一个孩子的(节点5)的左右值
SELECT c.*
FROM comment AS p, comment AS c
WHERE c.left_num BETWEEN p.left_num AND p.right_num
 AND p.comment_id = 4;
+------------+----------+-----------+
| comment_id | left_num | right_num |
+------------+----------+-----------+
|     4 |    6 |    13 |
|     5 |    7 |     8 |
... omit ...
-- 通过上面获得的信息更新 '节点4' 的父子几点的左右值
UPDATE comment SET left_num = left_num + 2 WHERE left_num > 6;
UPDATE comment SET right_num = right_num + 2 WHERE right_num > 6;

插入思路
1、将 '节点44' 的左值设置为 '节点4' 的左值 加1
2、将 '节点44' 的右值设置为 '节点4' 的左值 加2

INSERT INTO comment
SELECT 44, left_num + 1, left_num + 2
FROM comment WHERE comment_id = 4;

验证

-- 获得 '节点4' 孩子
SELECT c.*
FROM comment AS p, comment AS c
WHERE c.left_num BETWEEN p.left_num AND p.right_num
 AND p.comment_id = 4;
+------------+----------+-----------+
| comment_id | left_num | right_num |
+------------+----------+-----------+
|     4 |    6 |    15 |
|     5 |    9 |    10 |
|     6 |    11 |    14 |
|     7 |    12 |    13 |
|     44 |    7 |     8 |
+------------+----------+-----------+
-- 获得 '节点44' 父亲
SELECT p.*
FROM comment AS p, comment AS c
WHERE c.left_num BETWEEN p.left_num AND p.right_num
 AND c.comment_id = 44;
+------------+----------+-----------+
| comment_id | left_num | right_num |
+------------+----------+-----------+
|     1 |    1 |    16 |
|     4 |    6 |    15 |
|     44 |    7 |     8 |
+------------+----------+-----------+

1.4. 总结

这种树结构一般会用在查询多增加修改少的场景中(比如地区表,类别表之类的)。
在现实中其实还有些表的数据字段很多,并且具有层级关系。但是他们层级关系并不需要实时的那么准确(最终能达到数据数据一直就行),这是我们会将这种层级关系的字段和主表分开放在另外一个表。这样为了加快更新。如果实时更新影响到了性能,这是我们会考虑使用kafka(我们还没有发现性能很差)。

(0)

相关推荐

  • MySQL多层级结构-区域表使用树详解

    1.1. 前言 前面我们大概介绍了一下树结构表的基本使用.在我们项目中有好几块有用到多层级的概念.下面我们哪大家都比较熟悉的区域表来做演示. 1.2. 表结构和数据 区域表基本结构,可能在你的项目中还有包含其他字段.这边我只展示我们关心的字段: CREATE TABLE `area` ( `area_id` int(11) NOT NULL AUTO_INCREMENT COMMENT '地区ID', `name` varchar(40) NOT NULL DEFAULT 'unkonw' CO

  • MySQL多层级结构-树搜索介绍

    基本上在每个系统中都有那么几张表是自关联父子关系的结构.往往有很多人都是使用pid来做关联.在刚进入IT行业时使用CAKEPHP框架编写WEB的时候,使用它里面的一个ACL plugin实现权限管理的时候.发现一个表结构硬是不明白是怎么回事.具体表结构如下: CREATE TABLE acos ( id INTEGER(10) UNSIGNED NOT NULL AUTO_INCREMENT, parent_id INTEGER(10) DEFAULT NULL, model VARCHAR(2

  • Redis通用命令介绍以及key的层级结构讲解

    目录 1 Redis数据结构介绍 2 Redis通用命令 3 Redis命令-Key的层级结构 1 Redis数据结构介绍 Redis是一个key-value的数据库,key一般是String类型,不过value的类型多种多样: value的数据类型共有8种,前面5中为基本数据类型,后面3种是针对不同的情况指定的特殊数据类型. 命令不要死记,学会查询就好啦 Redis为了方便我们学习,将操作不同数据类型的命令也做了分组,在官网( Commands | Redis)可以查看到不同的命令:(点击CO

  • 浅谈MYSQL中树形结构表3种设计优劣分析与分享

    目录 简介 问题 设计1:邻接表 表设计 SQL示例 设计2:路径枚举 表设计 SQL示例 设计3:闭包表 表设计 SQL示例 结合使用 表设计 总结 简介 在开发中经常遇到树形结构的场景,本文将以部门表为例对比几种设计的优缺点: 问题 需求背景:根据部门检索人员, 问题:选择一个顶级部门情况下,跨级展示当前部门以及子部门下的所有人员,表怎么设计更合理 ? 递归吗 ?递归可以解决,但是势必消耗性能 设计1:邻接表 注:(常见父Id设计) 表设计 CREATE TABLE `dept_info01

  • 一文搞懂MySQL索引页结构

    目录 1.前言 2.索引页结构 2.1FileHeader 2.2PageHeader 2.3UserRecords 2.4Infimum&Supremum 2.5PageDirectory 2.6FileTrailer 3.总结 1. 前言 「页」是InnoDB管理存储空间的基本单位,也是内存和磁盘交互的基本单位.也就是说,哪怕你需要1字节的数据,InnoDB也会读取整个页的数据,下次读取的数据如果恰巧也在这个页里,就能命中缓存了.写也是一样的,写数据前要先把页加载到内存,然后在内存中修改,该

  • 基于chosen插件实现人员选择树搜索自动筛选功能

    要实现的功能截图: 要求: 1.点击输入框可以根据拼音自动筛选数据,并且标记已经选择的数据,没有结果的时候提示,相应的更新左边树状态 2.勾选树右侧树的复选框左侧出现相应的内容 我用到的插件 vue+chosen+ztree vue:组件化的MVVM库 chosen:单选列表和多选列表增强 ztree:基于jquery的树插件 分析 chosen插件已经可以实现1中的大部分效果,我们只需要预先获取数据,实现左右两侧一 一对应,最后点击发送获取最终的数据集合ID 具体实现 chosen需要的htm

  • 详细聊一聊mysql的树形结构存储以及查询

    目录 序 存储parent 存储path MPTT(Modified Preorder Tree Traversal) 小结 doc 序 本文主要研究一下mysql的树形结构存储及查询 存储parent 这种方式就是每个节点存储自己的parent_id信息 建表及数据准备 CREATE TABLE `menu` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(50) NOT NULL, `parent_id` int(11) NOT

  • mysql 使用存储过程实现树节点的获取

    如图: 表数据 这样的一棵树,如何获取"高寅瑞"下的所有节点(一条sql语句是肯定搞不定的) 通过存储过程来写 DELIMITER // CREATE FUNCTION `getChildLst`(rootId INT) RETURNS varchar(1000) READS SQL DATA BEGIN DECLARE sTemp VARCHAR(1000); DECLARE sTempChd VARCHAR(1000); SET sTemp = '$'; SET sTempChd

  • MySQL Innodb 存储结构 和 存储Null值 用法详解

    背景: 表空间:INNODB 所有数据都存在表空间当中(共享表空间),要是开启innodb_file_per_table,则每张表的数据会存到单独的一个表空间内(独享表空间). 独享表空间包括:数据,索引,插入缓存,数据字典.共享表空间包括:Undo信息(不会回收<物理空间上>),双写缓存信息,事务信息等. 段(segment):组成表空间,有区组成. 区(extent):有64个连续的页组成.每个页16K,总共1M.对于大的数据段,每次最后可申请4个区. 页(page):是INNODB 磁盘

  • Mysql中Binlog3种格式的介绍与分析

    一.Mysql Binlog格式介绍      Mysql binlog日志有三种格式,分别为Statement,MiXED,以及ROW! 1.Statement:每一条会修改数据的sql都会记录在binlog中. 优点:不需要记录每一行的变化,减少了binlog日志量,节约了IO,提高性能.(相比row能节约多少性能与日志量,这个取决于应用的SQL情况,正常同一条记录修改或者插入row格式所产生的日志量还小于Statement产生的日志量,但是考虑到如果带条件的update操作,以及整表删除,

随机推荐