Python正则表达式教程之三:贪婪/非贪婪特性

之前已经简单介绍了Python正则表达式的基础与捕获,那么在这一篇文章里,我将总结一下正则表达式的贪婪/非贪婪特性。

贪婪

默认情况下,正则表达式将进行贪婪匹配。所谓“贪婪”,其实就是在多种长度的匹配字符串中,选择较长的那一个。例如,如下正则表达式本意是选出人物所说的话,但是却由于“贪婪”特性,出现了匹配不当:

>>> sentence = """You said "why?" and I say "I don't know"."""
>>> re.findall(r'"(.*)"', sentence)
['why?" and I say "I don\'t know']

再比如,如下的几个例子都说明了正则表达式“贪婪”的特性:

>>> re.findall('hi*', 'hiiiii')
['hiiiii']
>>> re.findall('hi{2,}', 'hiiiii')
['hiiiii']
>>> re.findall('hi{1,3}', 'hiiiii')
['hiii']

非贪婪

当我们期望正则表达式“非贪婪”地进行匹配时,需要通过语法明确说明:

{2,5}?    捕获2-5次,但是优先次数少的匹配

在这里,问号?可能会有些让人犯晕,因为之前他已经有了自己的含义:前面的匹配出现0次或1次。其实,只要记住,当问号出现在表现不定次数的正则表达式部分之后时,就表示非贪婪匹配。

还是上面的那几个例子,用非贪婪匹配,则结果如下:

>>> re.findall('hi*?', 'hiiiii')
['h']
>>> re.findall('hi{2,}?', 'hiiiii')
['hii']
>>> re.findall('hi{1,3}?', 'hiiiii')
['hi']

另外一个例子中,使用非贪婪匹配,结果如下:

>>> sentence = """You said "why?" and I say "I don't know"."""
>>> re.findall(r'"(.*?)"', sentence)
['why?', "I don't know"]

捕获与非贪婪

严格来说,这一部分并不是非贪婪特性。但是由于其行为与非贪婪类似,所以为了方便记忆,就将其放在一起了。

(?=abc) 捕获,但不消耗字符,且匹配abc

(?!abc) 捕获,不消耗,且不匹配abc

在正则表达式匹配的过程中,其实存在“消耗字符”的过程,也就是说,一旦一个字符在匹配过程中被检索(消耗)过,后面的匹配就不会再检索这一字符了。

知道这个特性有什么用呢?还是用例子说明。比如,我们想找出字符串中出现过1次以上的单词:

>>> sentence = "Oh what a day, what a lovely day!"
>>> re.findall(r'\b(\w+)\b.*\b\1\b', sentence)
['what']

这样的正则表达式显然无法完成任务。为什么呢?原因就是,在第一个(\w+)匹配到what,并且其后的\1也匹配到第二个what的时候,“Oh what a day, what”这一段子串都已经被正则表达式消耗了,所以之后的匹配,将直接从第二个what之后开始。自然地,这里只能找出一个出现了两次的单词。

那么解决方案,就和上面提到的(?=abc)语法相关了。这样的语法可以在分组匹配的同时,不消耗字符串!所以,正确的书写方式应该是:

>>> re.findall(r'\b(\w+)\b(?=.*\b\1\b)', sentence)
['what', 'a', 'day']

如果我们需要匹配一个至少包含两个不同字母的单词,则可以使用(?!abc)的语法:

>>> re.search(r'([a-z]).*(?!\1)[a-z]', 'aa', re.IGNORECASE)
>>> re.search(r'([a-z]).*(?!\1)[a-z]', 'ab', re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 2), match='ab'>

总结

以上就是Python正则表达式中关于贪婪的全部内容了,希望本文的内容对大家的学习或者使用python能能带来一定的帮助,如果有疑问大家可以留言交流,如果有疑问大家可以留言交流。下一篇文章,我会继续总结一下Python正则表达式re模块的一些API的用法,请继续关注我们。

(0)

相关推荐

  • 在Python中实现贪婪排名算法的教程

    在较早的一遍文章中,我曾经提到过我已经写了一个属于自己的排序算法,并且认为需要通过一些代码来重新回顾一下这个排序算法. 对于我所完成的工作,我核实并且保证微处理器的安全.对非常复杂的CPU进行测试的一个方法就是创建该芯片的另一个模型,其可以用来产生在CPU上运行的伪随机指令流.这所谓的ISG(指令流产生器)能够在很短的时间内创建几千(甚至几百万)个这样的测试,通过某种方式,使其可以巧妙地给出一些对将在CPU上执行的指令流的控制或操纵. 现在对这些指令流进行模拟,可以通过每一个测试实例花费的时间获

  • Python入门篇之正则表达式

    正则表达式有两种基本的操作,分别是匹配和替换. 匹配就是在一个文本字符串中搜索匹配一特殊表达式: 替换就是在一个字符串中查找并替换匹配一特殊表达式的字符串.   1.基本元素   正则表达式定义了一系列的特殊字符元素以执行匹配动作. 正则表达式基本字符 字符 描述 text 匹配text字符串 . 匹配除换行符之外的任意一个单个字符 ^ 匹配一个字符串的开头 $ 匹配一个字符串的末尾 在正则表达式中,我们还可用匹配限定符来约束匹配的次数.   匹配限定符 最大匹配 最小匹配 描述 * * 重复匹

  • python中如何使用正则表达式的非贪婪模式示例

    前言 本文主要给大家介绍了关于python使用正则表达式的非贪婪模式的相关内容,分享出来供大家参考学习,下面话不多说了,来一起详细的介绍吧. 在正则表达式里,什么是正则表达式的贪婪与非贪婪匹配 如:String str="abcaxc"; Patter p="ab*c"; 贪婪匹配:正则表达式一般趋向于最大长度匹配,也就是所谓的贪婪匹配.如上面使用模式p匹配字符串str,结果就是匹配到:abcaxc(ab*c). 非贪婪匹配:就是匹配到结果就好,就少的匹配字符.如上

  • python正则表达式re模块详细介绍

    本模块提供了和Perl里的正则表达式类似的功能,不关是正则表达式本身还是被搜索的字符串,都可以是Unicode字符,这点不用担心,python会处理地和Ascii字符一样漂亮. 正则表达式使用反斜杆(\)来转义特殊字符,使其可以匹配字符本身,而不是指定其他特殊的含义.这可能会和python字面意义上的字符串转义相冲突,这也许有些令人费解.比如,要匹配一个反斜杆本身,你也许要用'\\\\'来做为正则表达式的字符串,因为正则表达式要是\\,而字符串里,每个反斜杆都要写成\\. 你也可以在字符串前加上

  • PYTHON正则表达式 re模块使用说明

    首先,运行 Python 解释器,导入 re 模块并编译一个 RE: #!python Python 2.2.2 (#1, Feb 10 2003, 12:57:01) >>> import re >>> p = re.compile('[a-z]+') >>> p <_sre.SRE_Pattern object at 80c3c28> 现在,你可以试着用 RE 的 [a-z]+ 去匹配不同的字符串.一个空字符串将根本不能匹配,因为 +

  • 零基础写python爬虫之神器正则表达式

    接下来准备用糗百做一个爬虫的小例子. 但是在这之前,先详细的整理一下Python中的正则表达式的相关内容. 正则表达式在Python爬虫中的作用就像是老师点名时用的花名册一样,是必不可少的神兵利器. 一. 正则表达式基础 1.1.概念介绍 正则表达式是用于处理字符串的强大工具,它并不是Python的一部分. 其他编程语言中也有正则表达式的概念,区别只在于不同的编程语言实现支持的语法数量不同. 它拥有自己独特的语法以及一个独立的处理引擎,在提供了正则表达式的语言里,正则表达式的语法都是一样的. 下

  • Python 匹配任意字符(包括换行符)的正则表达式写法

    想使用正则表达式来获取一段文本中的任意字符,写出如下匹配规则: (.*) 结果运行之后才发现,无法获得换行之后的文本.于是查了一下手册,才发现正则表达式中,"."(点符号)匹配的是除了换行符"\n"以外的所有字符. 以下为正确的正则表达式匹配规则: ([\s\S]*) 同时,也可以用 "([\d\D]*)"."([\w\W]*)" 来表示. Web技术之家_www.waweb.cn 在文本文件里, 这个表达式可以匹配所有的英文

  • Python 中文正则表达式笔记

    从字符串的角度来说,中文不如英文整齐.规范,这是不可避免的现实.本文结合网上资料以及个人经验,以 python 语言为例,稍作总结.欢迎补充或挑错. 一点经验 可以使用 repr()函数查看字串的原始格式.这对于写正则表达式有所帮助. Python 的 re模块有两个相似的函数:re.match(), re.search .两个函数的匹配过程完全一致,只是起点不同.match只从字串的开始位置进行匹配,如果失败,它就此放弃:而search则会锲而不舍地完全遍历整个字串中所有可能的位置,直到成功地

  • Python正则表达式非贪婪、多行匹配功能示例

    本文实例讲述了Python正则表达式非贪婪.多行匹配功能.分享给大家供大家参考,具体如下: 一些regular的tips: 1 非贪婪flag >>> re.findall(r"a(\d+?)","a23b") # 非贪婪模式 ['2'] >>> re.findall(r"a(\d+)","a23b") ['23'] 注意比较这种情况: >>> re.findall(r&q

  • python的正则表达式re模块的常用方法

    1.re的简介 使用python的re模块,尽管不能满足所有复杂的匹配情况,但足够在绝大多数情况下能够有效地实现对复杂字符串的分析并提取出相关信息.python 会将正则表达式转化为字节码,利用 C 语言的匹配引擎进行深度优先的匹配. 复制代码 代码如下: import re print re.__doc__ 可以查询re模块的功能信息,下面会结合几个例子说明. 2.re的正则表达式语法 正则表达式语法表如下: 语法 意义 说明 "." 任意字符 "^" 字符串开始

随机推荐