Python的collections模块中namedtuple结构使用示例

namedtuple 就是命名的 tuple,比较像 C 语言中 struct。一般情况下的 tuple 是 (item1, item2, item3,...),所有的 item 都只能按照 index 访问,没有明确的称呼,而 namedtuple 就是事先把这些 item 命名,以后可以方便访问。

from collections import namedtuple

# 初始化需要两个参数,第一个是 name,第二个参数是所有 item 名字的列表。
coordinate = namedtuple('Coordinate', ['x', 'y'])

c = coordinate(10, 20)
# or
c = coordinate(x=10, y=20)

c.x == c[0]
c.y == c[1]
x, y = c

namedtuple 还提供了 _make 从 iterable 对象中创建新的实例:

coordinate._make([10,20])

再来举个栗子:

# -*- coding: utf-8 -*-
"""
比如我们用户拥有一个这样的数据结构,每一个对象是拥有三个元素的tuple。
使用namedtuple方法就可以方便的通过tuple来生成可读性更高也更好用的数据结构。
"""
from collections import namedtuple
websites = [
 ('Sohu', 'http://www.google.com/', u'张朝阳'),
 ('Sina', 'http://www.sina.com.cn/', u'王志东'),
 ('163', 'http://www.163.com/', u'丁磊')
]
Website = namedtuple('Website', ['name', 'url', 'founder'])
for website in websites:
 website = Website._make(website)
 print website
 print website[0], website.url

结果:

Website(name='Sohu', url='http://www.google.com/', founder=u'\u5f20\u671d\u9633')
Sohu http://www.google.com/
Website(name='Sina', url='http://www.sina.com.cn/', founder=u'\u738b\u5fd7\u4e1c')
Sina http://www.sina.com.cn/
Website(name='163', url='http://www.163.com/', founder=u'\u4e01\u78ca')
163 http://www.163.com/
(0)

相关推荐

  • 使用Python的内建模块collections的教程

    collections是Python内建的一个集合模块,提供了许多有用的集合类. namedtuple 我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成: >>> p = (1, 2) 但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的. 定义一个class又小题大做了,这时,namedtuple就派上了用场: >>> from collections import namedtuple >>> Point = n

  • Python中Collections模块的Counter容器类使用教程

    1.collections模块 collections模块自Python 2.4版本开始被引入,包含了dict.set.list.tuple以外的一些特殊的容器类型,分别是: OrderedDict类:排序字典,是字典的子类.引入自2.7. namedtuple()函数:命名元组,是一个工厂函数.引入自2.6. Counter类:为hashable对象计数,是字典的子类.引入自2.7. deque:双向队列.引入自2.4. defaultdict:使用工厂函数创建字典,使不用考虑缺失的字典键.引

  • 简单掌握Python的Collections模块中counter结构的用法

    counter 是一种特殊的字典,主要方便用来计数,key 是要计数的 item,value 保存的是个数. from collections import Counter >>> c = Counter('hello,world') Counter({'l': 3, 'o': 2, 'e': 1, 'd': 1, 'h': 1, ',': 1, 'r': 1, 'w': 1}) 初始化可以传入三种类型的参数:字典,其他 iterable 的数据类型,还有命名的参数对. | __init

  • Python collections模块实例讲解

    collections模块基本介绍 我们都知道,Python拥有一些内置的数据类型,比如str, int, list, tuple, dict等, collections模块在这些内置数据类型的基础上,提供了几个额外的数据类型: 1.namedtuple(): 生成可以使用名字来访问元素内容的tuple子类2.deque: 双端队列,可以快速的从另外一侧追加和推出对象3.Counter: 计数器,主要用来计数4.OrderedDict: 有序字典5.defaultdict: 带有默认值的字典 n

  • 简介Python的collections模块中defaultdict类型的用法

    defaultdict 主要用来需要对 value 做初始化的情形.对于字典来说,key 必须是 hashable,immutable,unique 的数据,而 value 可以是任意的数据类型.如果 value 是 list,dict 等数据类型,在使用之前必须初始化为空,有些情况需要把 value 初始化为特殊值,比如 0 或者 ''. from collections import defaultdict person_by_age = defaultdict(list) for pers

  • Python标准库之collections包的使用教程

    前言 Python为我们提供了4种基本的数据结构:list, tuple, dict, set,但是在处理数据量较大的情形的时候,这4种数据结构就明显过于单一了,比如list作为数组在某些情形插入的效率会比较低,有时候我们也需要维护一个有序的dict.所以这个时候我们就要用到Python标准库为我们提供的collections包了,它提供了多个有用的集合类,熟练掌握这些集合类,不仅可以让我们让写出的代码更加Pythonic,也可以提高我们程序的运行效率. defaultdict defaultd

  • Python的collections模块中的OrderedDict有序字典

    如同这个数据结构的名称所说的那样,它记录了每个键值对添加的顺序. d = OrderedDict() d['a'] = 1 d['b'] = 10 d['c'] = 8 for letter in d: print letter 输出: a b c 如果初始化的时候同时传入多个参数,它们的顺序是随机的,不会按照位置顺序存储. >>> d = OrderedDict(a=1, b=2, c=3) OrderedDict([('a', 1), ('c', 3), ('b', 2)]) 除了和

  • 详解Python的collections模块中的deque双端队列结构

    deque 是 double-ended queue的缩写,类似于 list,不过提供了在两端插入和删除的操作. appendleft 在列表左侧插入 popleft 弹出列表左侧的值 extendleft 在左侧扩展 例如: queue = deque() # append values to wait for processing queue.appendleft("first") queue.appendleft("second") queue.appendl

  • Python的collections模块中namedtuple结构使用示例

    namedtuple 就是命名的 tuple,比较像 C 语言中 struct.一般情况下的 tuple 是 (item1, item2, item3,...),所有的 item 都只能按照 index 访问,没有明确的称呼,而 namedtuple 就是事先把这些 item 命名,以后可以方便访问. from collections import namedtuple # 初始化需要两个参数,第一个是 name,第二个参数是所有 item 名字的列表. coordinate = namedtu

  • Python的collections模块真的很好用

    collections是实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择.为了让大家更好的认识,本文详细总结collections的相关知识,一起来学习吧! collections模块:实现了特定目标的容器,以提供Python标准内建容器 dict.list.set.tuple 的替代选择. Counter:字典的子类,提供了可哈希对象的计数功能. defaultdict:字典的子类,提供了一个工厂函数,为字典查询提供了默认

  • Python编程functools模块中创建修改函数的高阶函数解析

    partial 函数 partial 为偏函数(有的地方也叫做部分应用函数),它是对函数的二次封装,将现有函数的部分参数提前绑定为指定值,然后再进行计算. 由于偏函数的可变参数少,因此函数调用的难度低. 直接展示代码: from functools import partial # 原函数声明 def show(name, level): print("name:", name, "level:", level) # 定义偏函数,封装 show() 函数,并为 na

  • python的paramiko模块实现远程控制和传输示例

    本文介绍了python的paramiko模块实现远程控制和传输示例,分享给大家,具体如下: 1 安装 sudo pip install paramiko 2 ssh实现远程控制 #LINUX下执行shell ssh username@ip #输入密码后就可以对远程机器进行操作 ssh username@ip command #输入密码后远程机器就执行command ssh运行后,想退出,可以kill掉ssh进程. 3 paramiko实现ssh import paramiko hostname

  • Python编程pygame模块实现移动的小车示例代码

    Pygame是跨平台Python模块,专为电子游戏设计,包含图像.声音.建立在SDL基础上,允许实时电子游戏研发而无需被低级语言(如机器语言和汇编语言)束缚. 最近一个星期学习了一下python的pygame模块,顺便做个小程序巩固所学的,运行效果如下: 其中,背景图"highway.jpg"是使用PhotoShop将其分辨率改变为640 × 480,而小车"car.png"则是将其转变为png格式的图片,并且填充其背景色,让其拥有透明性. 代码测试可用: # -*

  • Python使用pickle模块存储数据报错解决示例代码

    本文研究的主要是Python使用pickle模块存储数据报错解决方法,以代码的形式展示,具体如下. 首先来了解下pickle模块 pickle提供了一个简单的持久化功能.可以将对象以文件的形式存放在磁盘上. pickle模块只能在python中使用,python中几乎所有的数据类型(列表,字典,集合,类等)都可以用pickle来序列化, pickle序列化后的数据,可读性差,人一般无法识别. 接下来我们看下Python使用pickle模块存储数据报错解决方法. 代码: # 写入错误 TypeEr

随机推荐