将pandas.dataframe的数据写入到文件中的方法

导入实验常用的python包。如图2所示。

【import pandas as pd】pandas用来做数据处理。【import numpy as np】numpy用来做高维度矩阵运算.【import matplotlib.pyplot as plt】matplotlib用来做数据可视化。

pandas数据写入到csv文件中:

【names = [‘Bob','Jessica','Mary','John','Mel']】创建一个names列表【 births = [968,155,77,578,973]】创建一个births 列表【DataSet = list(zip(names,births))】用 zip 函数将这两个列表合并在一起【DataSet】查看生成的数据【df = pd.DataFrame(data = DataSet ,columns=[‘Names','Births'])】用生成的数据生成一个DataFrame对象【df】查看生成的dataFrame

将创建的数据写入到/opt/births1880.csv文件中,

【df.to_csv(‘/opt/births1880.csv', index=False, header=False )】将df写入到文件中【ls /opt/births1880.csv】查看文件是否存在【cat /opt/births1880.csv】查看文件内容

pandas读取csv中的数据

读取步骤3生成的数据,如图5所示。【local_data = r'/opt/births1880.csv'】将文件路径赋到变量local_data中【df2 = pd.read_csv(local_data,header=None)】读取内容赋值到df2【df2】查看df2的值【 df3 = pd.read_csv(local_data,header=None,names=[‘names','births'])】指定列名字赋值到df3【df3】查看df3的值

Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作,DataFrame是一张多维的表,大家可以把它想象成一张Excel表单或者Sql表。之前这篇文章已经介绍了从各种数据源将原始数据载入到dataframe中,这篇文件介绍怎么将处理好的dataframe中的数据写入到文件和数据库中。

以上这篇将pandas.dataframe的数据写入到文件中的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python实现在pandas.DataFrame添加一行

    实例如下所示: from pandas import * from random import * df = DataFrame(columns=('lib', 'qty1', 'qty2'))#生成空的pandas表 for i in range(5):#插入一行<span id="transmark" style="display:none;"></span> df.loc[i] = [randint(-1,1) for n in ran

  • 对pandas的dataframe绘图并保存的实现方法

    对dataframe绘图并保存: ax = df.plot() fig = ax.get_figure() fig.savefig('fig.png') 可以制定列,对该列各取值作统计: label_dis = df.label.value_counts() ax = label_dis.plot(title='label distribution', kind='bar', figsize=(18, 12)) fig = ax.get_figure() fig.savefig('label_d

  • 用pandas中的DataFrame时选取行或列的方法

    如下所示: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w #选择表格

  • pandas创建新Dataframe并添加多行的实例

    处理数据的时候,偶然遇到要把一个Dataframe中的某些行添加至一个空白的Dataframe中的问题. 最先想到的方法是创建Dataframe,从原有的Dataframe中逐行筛选出指定的行(类型为pandas的Series),并使用append方法进行添加.这种方法速度很慢,而且添加之后总会出现奇怪的问题,数据类型也不对. 较快的方法为,首先创建空的list,对原有的Dataframe进行逐行筛选,筛选出的行转化为dict类型,append进list中.全部添加完毕后,再将整个list转化为

  • pandas dataframe添加表格框线输出的方法

    将dataframe添加到texttable里面,实现格式化输出. data=[{"name":"Amay","age":20,"result":80}, {"name":"Tom","age":32,"result":90}] df=pd.DataFrame(data,columns=['name','age','result']) print(

  • pandas中的DataFrame按指定顺序输出所有列的方法

    问题: 输出新建的DataFrame对象时,DataFrame中各列的显示顺序和DataFrame定义中的顺序不一致. 例如: import pandas as pd grades = [48,99,75,80,42,80,72,68,36,78] df = pd.DataFrame( {'ID': ["x%d" % r for r in range(10)], 'Gender' : ['F', 'M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'M'],

  • python dataframe 输出结果整行显示的方法

    在使用dataframe时遇到datafram在列太多的情况下总是自动换行显示的情况,导致数据阅读困难,效果如下: # -*- coding: utf-8 -*- import numpy as np import pandas as pd df = pd.DataFrame(np.random.randn(1, 20)) print df 显示效果: 0 1 2 3 4 5 6 \ 0 -1.193428 -0.870381 -0.970323 -1.062275 1.227282 -3.01

  • 将pandas.dataframe的数据写入到文件中的方法

    导入实验常用的python包.如图2所示. [import pandas as pd]pandas用来做数据处理.[import numpy as np]numpy用来做高维度矩阵运算.[import matplotlib.pyplot as plt]matplotlib用来做数据可视化. pandas数据写入到csv文件中: [names = ['Bob','Jessica','Mary','John','Mel']]创建一个names列表[ births = [968,155,77,578,

  • Python写入数据到MP3文件中的方法

    本文实例讲述了Python写入数据到MP3文件中的方法.分享给大家供大家参考.具体分析如下: 通过Mp3的Id3V1数据段的数据来修正Mp3文件的正确名字,但是,有时候这个数据断中的数据是空的,所以这里写一个修改Id3V1数据段的数据的函数,同样是练习. 使用方法: writeMp3Header[ SongName] = '测试歌曲名称' writeMp3Header[ SongPeople] = '不得闲' writeMp3Header[ ZhuanJi] = '专辑' writeMp3Hea

  • 教你用python将数据写入Excel文件中

    目录 一.导入excel表格文件处理函数 二.创建excel表格类型文件 三.在excel表格类型文件中建立一张sheet表单 四.自定义列名 五.将列属性元组col写进sheet表单中 六.将数据写进sheet表单中 七.保存excel文件 附:Python读取Excel文件数据 总结 将数据写入Excel文件中,用python实现起来非常的简单,下面一步步地教大家. 一.导入excel表格文件处理函数 import xlwt 注意,这里的xlwt是python的第三方模块,需要下载安装才能使

  • python数据写入Excel文件中的实现步骤

    目录 一.导入excel表格文件处理函数 二.创建excel表格类型文件 三.在excel表格类型文件中建立一张sheet表单 四.自定义列名 五.将列属性元组col写进sheet表单中 六.将数据写进sheet表单中 七.保存excel文件 总结 将数据写入Excel文件中,用python实现起来非常的简单,下面一步步地教大家. 一.导入excel表格文件处理函数 import xlwt 注意,这里的xlwt是python的第三方模块,需要下载安装才能使用,不然导入不了(python第三方库的

  • Python打开文件,将list、numpy数组内容写入txt文件中的方法

    python保存numpy数据: numpy.savetxt("result.txt", numpy_data); 保存list数据: file=open('data.txt','w') file.write(str(list_data)); file.close() 以上这篇Python打开文件,将list.numpy数组内容写入txt文件中的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • Nodejs处理Json文件并将处理后的数据写入新文件中

    目录 处理Json文件并将处理后的数据写入新文件 问题描述 实现过程 用Nodejs解析json数据 处理Json文件并将处理后的数据写入新文件 问题描述 事情是这样的,朋友让我处理一个json文件并将处理后的数据写入新文件.这个json文件的结构如下: [     {         "head_img": "http://wx.qlogo.cn/mmhead/xxxxxxxxxxx",         "nick_name": "x

  • C#利用OLEDB实现将DataTable写入Excel文件中

    OLEDB 定义: OLE DB(OLEDB)是微软设计的通向不同的数据源的低级应用程序接口.OLE DB不仅包括微软资助的标准数据接口开放数据库连通性(ODBC)的结构化查询语言(SQL)能力,还具有面向其他非SQL数据类型的通路. 作为微软的组件对象模型(COM)的一种设计,OLE DB是一组读写数据的方法(在过去可能被称为渠道).OLE DB中的对象主要包括数据源对象.阶段对象.命令对象和行组对象. 优缺点: 优点:简单快速,能够操作高版本Excel 缺点:只能够进行有限的操作(读.写)

  • pandas 把数据写入txt文件每行固定写入一定数量的值方法

    我遇到的情况是:把数据按一定的时间段提出.比如提出每天6:00-8:00的每个数据,可以这样做: # -*-coding: utf-8 -*- import pandas as pd import datetime #读取csv文件 df=pd.read_csv('A_2+20+DoW+VC.csv') #求'ave_time'这一列的平均值 aveTime=df['ave_time'].mean() #把ave_time这列的缺失值进进行填充,填充的方法是按这一列的平均值进行填充 df2=df

  • OpenCV中的cv::Mat函数将数据写入txt文件

    在使用opencv进行图像处理的过程中,经常会涉及到将文件中的数据读入到cv::Mat中,或者将cv::Mat中的数据写入到txt文件中. 下面就介绍一种我常用的将cv::Mat中的数据写入到txt文件中的方法,具体见代码: void writeMatToFile(cv::Mat& m, const char* filename) { std::ofstream fout(filename); if (!fout) { std::cout << "File Not Opene

  • 使用ByteArrayOutputStream实现将数据写入本地文件

    目录 ByteArrayOutputStream将数据写入本地文件 那来了解一下ByteArrayOutPutStream吧 在表格输出时 FileOutputStream的写入方法 把读取的结果写入到ByteArrayOutputStream ByteArrayOutputStream将数据写入本地文件 在一个项目中做一次性校验部分,需要将校验后数据写入表格后上传.巧的是,服务器Down了.作为一个新手实习生菜鸟,为了测试自己的代码和输出结果有没有毛病,在大神同事的指点下选择了先将表格输出到本

随机推荐