python gensim使用word2vec词向量处理中文语料的方法

word2vec介绍

word2vec官网:https://code.google.com/p/word2vec/

  • word2vec是google的一个开源工具,能够根据输入的词的集合计算出词与词之间的距离。
  • 它将term转换成向量形式,可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度。
  • word2vec计算的是余弦值,距离范围为0-1之间,值越大代表两个词关联度越高。
  • 词向量:用Distributed Representation表示词,通常也被称为“Word Representation”或“Word Embedding(嵌入)”。

简言之:词向量表示法让相关或者相似的词,在距离上更接近。

具体使用(处理中文)

收集语料

本文:亚马逊中文书评语料,12万+句子文本。
语料以纯文本形式存入txt文本。
注意:
理论上语料越大越好
理论上语料越大越好
理论上语料越大越好
重要的事情说三遍。
因为太小的语料跑出来的结果并没有太大意义。

分词

中文分词工具还是很多的,我自己常用的:
- 中科院NLPIR
- 哈工大LTP
- 结巴分词

注意:分词文本将作为word2vec的输入文件。

分词文本示例

word2vec使用

python,利用gensim模块。

win7系统下在通常的python基础上gensim模块不太好安装,所以建议使用anaconda,具体参见: python开发之anaconda【以及win7下安装gensim】

直接上代码——
#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
功能:测试gensim使用,处理中文语料
时间:2016年5月21日 20:49:07
"""

from gensim.models import word2vec
import logging

# 主程序
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
sentences = word2vec.Text8Corpus(u"C:\\Users\\lenovo\\Desktop\\word2vec实验\\亚马逊中文书评语料.txt") # 加载语料
model = word2vec.Word2Vec(sentences, size=200) # 默认window=5

# 计算两个词的相似度/相关程度
y1 = model.similarity(u"不错", u"好")
print u"【不错】和【好】的相似度为:", y1
print "--------\n"

# 计算某个词的相关词列表
y2 = model.most_similar(u"书", topn=20) # 20个最相关的
print u"和【书】最相关的词有:\n"
for item in y2:
  print item[0], item[1]
print "--------\n"

# 寻找对应关系
print u"书-不错,质量-"
y3 = model.most_similar([u'质量', u'不错'], [u'书'], topn=3)
for item in y3:
  print item[0], item[1]
print "--------\n"

# 寻找不合群的词
y4 = model.doesnt_match(u"书 书籍 教材 很".split())
print u"不合群的词:", y4
print "--------\n"

# 保存模型,以便重用
model.save(u"书评.model")
# 对应的加载方式
# model_2 = word2vec.Word2Vec.load("text8.model")

# 以一种C语言可以解析的形式存储词向量
model.save_word2vec_format(u"书评.model.bin", binary=True)
# 对应的加载方式
# model_3 = word2vec.Word2Vec.load_word2vec_format("text8.model.bin", binary=True)

if __name__ == "__main__":
  pass

运行结果

【不错】和【好】的相似度为: 0.790186663972
--------

和【书】最相关的词有:

书籍 0.675163209438
书本 0.633386790752
确实 0.568059504032
教材 0.551493048668
正品 0.532882153988
没得说 0.529319941998
好 0.522468209267
据说 0.51004421711
图书 0.508755385876
挺 0.497194319963
新书 0.494331330061
很 0.490583062172
不错 0.476392805576
正版 0.460161447525
纸张 0.454929769039
可惜 0.450752496719
工具书 0.449723362923
的确 0.448629021645
商品 0.444284260273
纸质 0.443040698767
--------

书-不错,质量-
精美 0.507958948612
总的来说 0.496103972197
材质 0.493623793125
--------

不合群的词: 很

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python使用numpy产生正态分布随机数的向量或矩阵操作示例

    本文实例讲述了Python使用numpy产生正态分布随机数的向量或矩阵操作.分享给大家供大家参考,具体如下: 简单来说,正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力.一般的正态分布可以通过标准正态分布配合数学期望向量和协方差矩阵得到.如下代码,可以得到满足一维和二维正态分布的样本. 示例1(一维正态分布): # coding=utf-8 '''

  • Python中的支持向量机SVM的使用(附实例代码)

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html. skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from

  • Python SVM(支持向量机)实现方法完整示例

    本文实例讲述了Python SVM(支持向量机)实现方法.分享给大家供大家参考,具体如下: 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end: 结束 op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 是否达到迭代次数 op3=>operation: 寻找超平面分割最小间隔 ccond=>cond

  • Python文本特征抽取与向量化算法学习

    本文为大家分享了Python文本特征抽取与向量化的具体代码,供大家参考,具体内容如下 假设我们刚看完诺兰的大片<星际穿越>,设想如何让机器来自动分析各位观众对电影的评价到底是"赞"(positive)还是"踩"(negative)呢? 这类问题就属于情感分析问题.这类问题处理的第一步,就是将文本转换为特征. 因此,这章我们只学习第一步,如何从文本中抽取特征,并将其向量化. 由于中文的处理涉及到分词问题,本文用一个简单的例子来说明如何使用Python的机器

  • Python中使用支持向量机SVM实践

    在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解. (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等. (3)SVM一般

  • Python中使用支持向量机(SVM)算法

    在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解.   (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等.   (3)S

  • Python机器学习之SVM支持向量机

    SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集. SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的: 支持向量机通俗导论(理解SVM的3层境界) JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了..强烈推荐. 还有一个比较通俗的简单版本的:手把手教你实现SVM算法 SVN原理比较复杂,但是思想很简单,一句话概括,就

  • python 机器学习之支持向量机非线性回归SVR模型

    本文介绍了python 支持向量机非线性回归SVR模型,废话不多说,具体如下: import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' diabetes =

  • python gensim使用word2vec词向量处理中文语料的方法

    word2vec介绍 word2vec官网:https://code.google.com/p/word2vec/ word2vec是google的一个开源工具,能够根据输入的词的集合计算出词与词之间的距离. 它将term转换成向量形式,可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度. word2vec计算的是余弦值,距离范围为0-1之间,值越大代表两个词关联度越高. 词向量:用Distributed Representation表示词,通常

  • 在python下实现word2vec词向量训练与加载实例

    项目中要对短文本进行相似度估计,word2vec是一个很火的工具.本文就word2vec的训练以及加载进行了总结. word2vec的原理就不描述了,word2vec词向量工具是由google开发的,输入为文本文档,输出为基于这个文本文档的语料库训练得到的词向量模型. 通过该模型可以对单词的相似度进行量化分析. word2vec的训练方法有2种,一种是通过word2vec的官方手段,在linux环境下编译并执行. 在github上下载word2vec的安装包,然后make编译.查看demo-wo

  • python获取txt文件词向量过程详解

    在读取https://github.com/Embedding/Chinese-Word-Vectors中的中文词向量时,选择了一个有3G多的txt文件,之前在做词向量时用的是word2vec,所以直接导入模型然后indexword即可. 因为这是一个txt大文件,尝试了DataFrame,np.loadtxt等,都没有成功,其中主要遇到的问题是: 如何读取完整的大文件,而不会出现内存不足memery error等问题 将读取出来的文件,保存为npy文件 根据词找到对应的向量 解决办法: 尝试使

  • python解决Fedora解压zip时中文乱码的方法

    前言 很多时候在windows下压缩文件没问题,但是到了Linux下,出现乱码,很常见.以前在Ubuntu下,用`unzip -O GBK filename.zip` 就可以搞定. 换了Fedora后,暂时没发现乱码的压缩文件.晚上下载一本书的光盘,又碰到了乱码.尝试之前的方法没成功.看了下unzip的help,没-O那个参数了== 刚好找到一个用python解决的办法,分享下. 新建一个`.py`后缀的文件,直接复制粘贴代码: #!/usr/bin/env python # -*- codin

  • 基于pytorch 预训练的词向量用法详解

    如何在pytorch中使用word2vec训练好的词向量 torch.nn.Embedding() 这个方法是在pytorch中将词向量和词对应起来的一个方法. 一般情况下,如果我们直接使用下面的这种: self.embedding = torch.nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeding_dim) num_embeddings=vocab_size 表示词汇量的大小 embedding_dim=embeding

  • 对Python中gensim库word2vec的使用详解

    pip install gensim安装好库后,即可导入使用: 1.训练模型定义 from gensim.models import Word2Vec model = Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4) 参数解释: 1.sg=1是skip-gram算法,对低频词敏感:默认sg=0为CBOW算法. 2.size是输出词向量的维数,值

  • Python机器学习NLP自然语言处理基本操作词向量模型

    目录 概述 词向量 词向量维度 Word2Vec CBOW 模型 Skip-Gram 模型 负采样模型 词向量的训练过程 1. 初始化词向量矩阵 2. 神经网络反向传播 词向量模型实战 训练模型 使用模型 概述 从今天开始我们将开启一段自然语言处理 (NLP) 的旅程. 自然语言处理可以让来处理, 理解, 以及运用人类的语言, 实现机器语言和人类语言之间的沟通桥梁. 词向量 我们先来说说词向量究竟是什么. 当我们把文本交给算法来处理的时候, 计算机并不能理解我们输入的文本, 词向量就由此而生了.

  • python初步实现word2vec操作

    一.前言 一开始看到word2vec环境的安装还挺复杂的,安了半天Cygwin也没太搞懂.后来突然发现,我为什么要去安c语言版本的呢,我应该去用python版本的,然后就发现了gensim,安装个gensim的包就可以用word2vec了,不过gensim只实现了word2vec里面的skip-gram模型.若要用到其他模型,就需要去研究其他语言的word2vec了. 二.语料准备 有了gensim包之后,看了网上很多教程都是直接传入一个txt文件,但是这个txt文件长啥样,是什么样的数据格式呢

  • python根据文本生成词云图代码实例

    这篇文章主要介绍了python根据文本生成词云图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 效果 代码 from wordcloud import WordCloud import codecs import jieba #import jieba.analyse as analyse from scipy.misc import imread import os from os import path import matplot

  • python词云库wordcloud的使用方法与实例详解

    wordcloud是优秀的词云展示第三方库 一.基本使用 import jieba import wordcloud txt = open("1.txt", "r", encoding='utf-8').read() words = jieba.lcut(txt) txt_1 = " ".join(words) # print(txt1) w = wordcloud.WordCloud(font_path="msyh.ttc"

随机推荐