基于Python的图像数据增强Data Augmentation解析

1.1 简介

深层神经网络一般都需要大量的训练数据才能获得比较理想的结果。在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟合。

在计算机视觉中,典型的数据增强方法有翻转(Flip),旋转(Rotat ),缩放(Scale),随机裁剪或补零(Random Crop or Pad),色彩抖动(Color jittering),加噪声(Noise)

笔者在跟进视频及图像中的人体姿态检测和关键点追踪(Human Pose Estimatiion and Tracking in videos)的项目。因此本文的数据增强仅使用——翻转(Flip),旋转(Rotate ),缩放以及缩放(Scale)

2.1 裁剪(Crop)

  • image.shape--([3, width, height])一个视频序列中的一帧图片,裁剪前大小不统一
  • bbox.shape--([4,])人体检测框,用于裁剪
  • x.shape--([1,13]) 人体13个关键点的所有x坐标值
  • y.shape--([1,13])人体13个关键点的所有y坐标值
def crop(image, bbox, x, y, length):
    x, y, bbox = x.astype(np.int), y.astype(np.int), bbox.astype(np.int)

    x_min, y_min, x_max, y_max = bbox
    w, h = x_max - x_min, y_max - y_min

    # Crop image to bbox
    image = image[y_min:y_min + h, x_min:x_min + w, :]

    # Crop joints and bbox
    x -= x_min
    y -= y_min
    bbox = np.array([0, 0, x_max - x_min, y_max - y_min])

    # Scale to desired size
    side_length = max(w, h)
    f_xy = float(length) / float(side_length)
    image, bbox, x, y = Transformer.scale(image, bbox, x, y, f_xy)

    # Pad
    new_w, new_h = image.shape[1], image.shape[0]
    cropped = np.zeros((length, length, image.shape[2]))

    dx = length - new_w
    dy = length - new_h
    x_min, y_min = int(dx / 2.), int(dy / 2.)
    x_max, y_max = x_min + new_w, y_min + new_h

    cropped[y_min:y_max, x_min:x_max, :] = image
    x += x_min
    y += y_min

    x = np.clip(x, x_min, x_max)
    y = np.clip(y, y_min, y_max)

    bbox += np.array([x_min, y_min, x_min, y_min])
    return cropped, bbox, x.astype(np.int), y.astype(np.int)

2.2 缩放(Scale)

  • image.shape--([3, 256, 256])一个视频序列中的一帧图片,裁剪后输入网络为256*256
  • bbox.shape--([4,])人体检测框,用于裁剪
  • x.shape--([1,13]) 人体13个关键点的所有x坐标值
  • y.shape--([1,13])人体13个关键点的所有y坐标值
  • f_xy--缩放倍数
def scale(image, bbox, x, y, f_xy):
    (h, w, _) = image.shape
    h, w = int(h * f_xy), int(w * f_xy)
    image = resize(image, (h, w), preserve_range=True, anti_aliasing=True, mode='constant').astype(np.uint8)

    x = x * f_xy
    y = y * f_xy
    bbox = bbox * f_xy

    x = np.clip(x, 0, w)
    y = np.clip(y, 0, h)

    return image, bbox, x, y

2.3 翻转(fillip)

这里是将图片围绕对称轴进行左右翻转(因为人体是左右对称的,在关键点检测中有助于防止模型过拟合)

def flip(image, bbox, x, y):
    image = np.fliplr(image).copy()
    w = image.shape[1]
    x_min, y_min, x_max, y_max = bbox
    bbox = np.array([w - x_max, y_min, w - x_min, y_max])
    x = w - x
    x, y = Transformer.swap_joints(x, y)
    return image, bbox, x, y

翻转前:

翻转后:

2.4 旋转(rotate)

angle--旋转角度

def rotate(image, bbox, x, y, angle):
    # image - -(256, 256, 3)
    # bbox - -(4,)
    # x - -[126 129 124 117 107 99 128 107 108 105 137 155 122 99]
    # y - -[209 176 136 123 178 225 65 47 46 24 44 64 49 54]
    # angle - --8.165648811999333
    # center of image [128,128]
    o_x, o_y = (np.array(image.shape[:2][::-1]) - 1) / 2.
    width,height = image.shape[0],image.shape[1]
    x1 = x
    y1 = height - y
    o_x = o_x
    o_y = height - o_y
    image = rotate(image, angle, preserve_range=True).astype(np.uint8)
    r_x, r_y = o_x, o_y
    angle_rad = (np.pi * angle) /180.0
    x = r_x + np.cos(angle_rad) * (x1 - o_x) - np.sin(angle_rad) * (y1 - o_y)
    y = r_y + np.sin(angle_rad) * (x1 - o_x) + np.cos(angle_rad) * (y1 - o_y)
    x = x
    y = height - y
    bbox[0] = r_x + np.cos(angle_rad) * (bbox[0] - o_x) + np.sin(angle_rad) * (bbox[1] - o_y)
    bbox[1] = r_y + -np.sin(angle_rad) * (bbox[0] - o_x) + np.cos(angle_rad) * (bbox[1] - o_y)
    bbox[2] = r_x + np.cos(angle_rad) * (bbox[2] - o_x) + np.sin(angle_rad) * (bbox[3] - o_y)
    bbox[3] = r_y + -np.sin(angle_rad) * (bbox[2] - o_x) + np.cos(angle_rad) * (bbox[3] - o_y)
    return image, bbox, x.astype(np.int), y.astype(np.int)

旋转前:

旋转后:

3 结果(output)

数据增强前的原图:

数据增强后:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python Pandas中根据列的值选取多行数据

    Pandas中根据列的值选取多行数据 # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的

  • Python 读取指定文件夹下的所有图像方法

    (1)数据准备 数据集介绍: 数据集中存放的是1223幅图像,其中756个负样本(图像名称为0.1~0.756),458个正样本(图像名称为1.1~1.458),其中:"."前的标号为样本标签,"."后的标号为样本序号 (2)利用python读取文件夹中所有图像 ''' Load the image files form the folder input: imgDir: the direction of the folder imgName:the name of

  • Python Pandas 如何shuffle(打乱)数据

    在Python里面,使用Pandas里面的DataFrame来存放数据的时候想要把数据集进行shuffle会许多的方法,本文介绍两种比较常用而且简单的方法. 应用情景: 我们有下面以个DataFrame 我们可以看到BuyInter的数值是按照0,-1,-1,2,2,2,3,3,3,3这样排列的,我们希望不保持这个次序,但是同时列属性又不能改变,即如下效果: 实现方法: 最简单的方法就是采用pandas中自带的 sample这个方法. 假设df是这个DataFrame df.sample(fra

  • 使用Python轻松完成垃圾分类(基于图像识别)

    0 环境 Python版本:3.6.8 系统版本:macOS Mojave Python Jupyter Notebook 1 引言 七月了,大家最近一定被一项新的政策给折磨的焦头烂额,那就是垃圾分类.<上海市生活垃圾管理条例>已经正式实施了,相信还是有很多的小伙伴和我一样,还没有完全搞清楚哪些应该扔在哪个类别里.感觉每天都在学习一遍垃圾分类,真令人头大. 听说一杯没有喝完的珍珠奶茶应该这么扔 首先,没喝完的奶茶水要倒在水池里 珍珠,水果肉等残渣放进湿垃圾 把杯子要丢入干垃圾 接下来是盖子,如

  • python数据预处理之数据标准化的几种处理方式

    何为标准化: 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析.数据标准化也就是统计数据的指数化.数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面.数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果.数据无量纲化处理主要解决数据的可比性. 几种标准化方法: 归一化Max-Min min-max标准化方

  • Python向excel中写入数据的方法

    最近做了一项工作需要把处理的数据写入到Excel表格中进行保存,所以在此就简单介绍使用Python如何把数据保存到excel表格中. 数据导入之前需要安装 xlwt依赖包,安装的方法就很简单,直接 pip install xlwt ,如果电脑中安装过就不需要重复安装. 接下来就做一个简单的demo ,把三行数据添加到excel中. 具体代码如下: #!/usr/bin/env python # coding=utf-8 from xlwt import * #需要xlwt库的支持 #import

  • python数据归一化及三种方法详解

    数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性.原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价.以下是三种常用的归一化方法: min-max标准化(Min-Max Normalization) 也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 , 1]之间.转换函数如下: 其中max为样本数据的最大值,

  • 基于Python的图像数据增强Data Augmentation解析

    1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟合. 在计算机视觉中,典型的数据增强方法有翻转(Flip),旋转(Rotat ),缩放(Scale),随机裁剪或补零(Random Crop or Pad),色彩抖动(Color jittering),加噪声(Noise) 笔者在跟进视频及图像中的人体姿态检测和关键点追踪(Human Pose Es

  • python神经网络学习数据增强及预处理示例详解

    目录 学习前言 处理长宽不同的图片 数据增强 1.在数据集内进行数据增强 2.在读取图片的时候数据增强 3.目标检测中的数据增强 学习前言 进行训练的话,如果直接用原图进行训练,也是可以的(就如我们最喜欢Mnist手写体),但是大部分图片长和宽不一样,直接resize的话容易出问题. 除去resize的问题外,有些时候数据不足该怎么办呢,当然要用到数据增强啦. 这篇文章就是记录我最近收集的一些数据预处理的方式 处理长宽不同的图片 对于很多分类.目标检测算法,输入的图片长宽是一样的,如224,22

  • python目标检测数据增强的代码参数解读及应用

    目录 数据增强做了什么 目标检测中的图像增强 全部代码 数据增强做了什么 数据增强是非常重要的提高目标检测算法鲁棒性的手段,学习一下对身体有好处! 数据增强其实就是让图片变得更加多样.比如说原图是一个电脑 如果不使用数据增强的话这个电脑就只是一个电脑,每次训练的电脑都是这样的样子的,但是我们实际生活中电脑是多样的. 因此我们可以通过改变亮度,图像扭曲等方式使得图像变得更加多种多样,如下图所示,尽管亮度,形态发生了细微改变,但本质上,这些东西都依然是电脑. 改变后的图片放入神经网络进行训练可以提高

  • 详解基于python的图像Gabor变换及特征提取

    1.前言 在深度学习出来之前,图像识别领域北有"Gabor帮主",南有"SIFT慕容小哥".目前,深度学习技术可以利用CNN网络和大数据样本搞事情,从而取替"Gabor帮主"和"SIFT慕容小哥"的江湖地位.但,在没有大数据和算力支撑的"乡村小镇"地带,或是对付"刁民小辈","Gabor帮主"可以大显身手,具有不可撼动的地位.IT武林中,有基于C++和OpenCV,或

  • 基于Python制作图像完美超分处理工具

    目录 前言 安装 使用 图片超分 视频超分 项目说明 代码说明 总结 前言 很久没更新这个专栏了,最近比较忙.前段时间看到了这个模型觉着很有意思,弄下来自己玩了玩,但是没时间写文章,一直搁置到现在. 废话不多说,先上Github地址: RealBasicVSR地址 从给出的效果来看,还是很不错的,左侧是超分后的画面,右边是原画质,得到明显提升.下面我说一下我的安装过程,还有一些使用中的踩坑,让大家去测试项目的时候可以提前规避. 安装 项目拉下来之后,我们先打开README,看看说明. 安装的步骤

  • 基于Python的图像阈值化分割(迭代法)

    1.阈值化分割原理 通过对图像的灰度直方图进行数学统计,选择一个或多个阈值将像素划分为若干类.一般情况下,当图像由灰度值相差较大的目标和背景组成时,如果目标区域内部像素灰度分布均匀一致,背景区域像素在另一个灰度级上也分布均匀,这时图像的灰度直方图会呈现出双峰特性. 在这种情况下,选取位于这两个峰值中间的谷底对应的灰度值T作为灰度阈值,将图像中各个像素的灰度值与这个阈值进行比较,根据比较的结果将图像中的像素划分到两个类中.像素灰度值大于阈值T的像素点归为一类,其余像素点归为另一类.经阈值化处理后的

  • 基于Python实现图像文字识别OCR工具

    目录 引言 功能列表 OCR部分 界面部分 软件代码 参考链接 引言 最近在技术交流群里聊到一个关于图像文字识别的需求,在工作.生活中常常会用到,比如票据.漫画.扫描件.照片的文本提取. 博主基于 PyQt + PaddleOCR 写了一个桌面端的OCR工具,用于快速实现图片中文本区域自动检测+文本自动识别. 识别效果如下图所示: 所有框选区域为OCR算法自动检测,右侧列表有每个框对应的文字内容: 点击右侧"识别结果"中的文本记录,然后点击"复制到剪贴板"即可复制该

  • 基于Python实现图像的傅里叶变换

    目录 前言 (1)基本概念 (2)读取图像信息 1. 傅里叶变换 (1)基本概念 (2)numpy实现 (3)OpevCV实现  2. 傅里叶逆变换 (1)基本概念 (2)代码实现 前言 首先是本文总体代码,改一下图像的读取路径就可以运行了,但我还是建议大家先看后面的步骤一行行敲代码,这样效果更好: """ Author:XiaoMa date:2021/11/7 """ import cv2 import matplotlib.pyplot a

  • 基于Python实现层次性数据和闭包性质

    目录 绪论 1.序列的表示 表操作 对链表的映射 2.层次性结构 对树的映射 3.序列做为一种约定的界面 绪论 序对可以为我们提供用于构造复合数据的基本“粘接剂”,鉴于Python中tuple中元素不可变的性质,我们通过list来实现序对,如[1, 2].Python的PyListObject对象中实际是存放的是PyObject*指针, 所以可以将PyListObject视为vecter<PyObject*>.这是一种盒子与指针表示方式(list内的元素表示为一个指向对象盒子的指针).对于[1

  • 基于python读取图像的几种方式汇总

    目录 本文介绍几种基于python的图像读取方式: 基于PIL库的图像读取.保存和显示 基于matplotlib的图像读取.显示和保存 基于scikit-image的图像读取.保存和显示 基于imageio的图像读取.显示和保存 总结 本文介绍几种基于python的图像读取方式: 基于PIL库的图像读取.保存和显示 基于opencv-python的图像读取.保存和显示 基于matplotlib的图像读取.保存和显示 基于scikit-image的图像读取.保存和显示 基于imageio的图像读取

随机推荐