Python使用matplotlib绘制余弦的散点图示例

本文实例讲述了Python使用matplotlib绘制余弦的散点图。分享给大家供大家参考,具体如下:

一 代码

import numpy as np
import pylab as pl
a = np.arange(0,2.0*np.pi,0.1)
b = np.cos(a)
#绘制散点图
pl.scatter(a,b)
pl.show()

二 运行结果

三 修改散点符号代码

import numpy as np
import pylab as pl
a = np.arange(0,2.0*np.pi,0.1)
b = np.cos(a)
pl.scatter(a,b,marker='+')
pl.show()

四 运行结果

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:

  • Python基于matplotlib实现绘制三维图形功能示例
  • Python实现在tkinter中使用matplotlib绘制图形的方法示例
  • Python使用matplotlib实现绘制自定义图形功能示例
  • python+matplotlib实现动态绘制图片实例代码(交互式绘图)
  • Python+matplotlib绘制不同大小和颜色散点图实例
  • Python使用matplotlib绘制正弦和余弦曲线的方法示例
  • Python matplotlib画图实例之绘制拥有彩条的图表
  • matplotlib在python上绘制3D散点图实例详解
  • python学习之matplotlib绘制散点图实例
  • python使用matplotlib绘制折线图教程
  • Python使用matplotlib绘制多个图形单独显示的方法示例
(0)

相关推荐

  • Python基于matplotlib实现绘制三维图形功能示例

    本文实例讲述了Python基于matplotlib实现绘制三维图形功能.分享给大家供大家参考,具体如下: 代码一: # coding=utf-8 import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d x,y = np.mgrid[-2:2:20j,-2:2:20j] #测试数据 z=x*np.exp(-x**2-y**2) #三维图形 ax = plt.subplot(111, project

  • Python使用matplotlib实现绘制自定义图形功能示例

    本文实例讲述了Python使用matplotlib实现绘制自定义图形功能.分享给大家供大家参考,具体如下: 一 代码 from matplotlib.path importPath from matplotlib.patches importPathPatch import matplotlib.pyplot as plt fig, ax = plt.subplots() #定义绘图指令与控制点坐标 #其中MOVETO表示将绘制起点移动到指定坐标 #CURVE4表示使用4个控制点绘制3次贝塞尔曲

  • Python使用matplotlib绘制正弦和余弦曲线的方法示例

    本文实例讲述了Python使用matplotlib绘制正弦和余弦曲线的方法.分享给大家供大家参考,具体如下: 一 介绍 关键词:绘图库 官网:http://matplotlib.org 二 代码 import numpy as np import matplotlib.pyplot as plt #line x=np.linspace(-np.pi,np.pi,256,endpoint=True) #定义余弦函数正弦函数 c,s=np.cos(x),np.sin(x) plt.figure(1)

  • matplotlib在python上绘制3D散点图实例详解

    大家可以先参考官方演示文档: 效果图: ''' ============== 3D scatterplot ============== Demonstration of a basic scatterplot in 3D. ''' from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np def randrange(n, vmin, vmax): ''' Helper f

  • Python matplotlib画图实例之绘制拥有彩条的图表

    生产定制一个彩条标签. 首先导入: import matplotlib.pyplot as plt import numpy as np from matplotlib import cm from numpy.random import randn 制作拥有垂直(默认)彩条的图表: fig, ax = plt.subplots() data = np.clip(randn(250, 250), -1, 1) cax = ax.imshow(data, interpolation='neares

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

  • Python实现在tkinter中使用matplotlib绘制图形的方法示例

    本文实例讲述了Python实现在tkinter中使用matplotlib绘制图形的方法.分享给大家供大家参考,具体如下: 一. 代码: # coding=utf-8 import sys import Tkinter as Tk import matplotlib from numpy import arange, sin, pi from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg,NavigationToolbar2T

  • python学习之matplotlib绘制散点图实例

    要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

  • python使用matplotlib绘制折线图教程

    matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. 在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不

  • Python使用matplotlib绘制多个图形单独显示的方法示例

    本文实例讲述了Python使用matplotlib绘制多个图形单独显示的方法.分享给大家供大家参考,具体如下: 一 代码 import numpy as np import matplotlib.pyplot as plt #创建自变量数组 x= np.linspace(0,2*np.pi,500) #创建函数值数组 y1 = np.sin(x) y2 = np.cos(x) y3 = np.sin(x*x) #创建图形 plt.figure(1) ''' 意思是在一个2行2列共4个子图的图中,

  • python+matplotlib实现动态绘制图片实例代码(交互式绘图)

    本文研究的主要是python+matplotlib实现动态绘制图片(交互式绘图)的相关内容,具体介绍和实现代码如下所示. 最近在研究动态障碍物避障算法,在Python语言进行算法仿真时需要实时显示障碍物和运动物的当前位置和轨迹,利用Anaconda的Python打包集合,在Spyder中使用Python3.5语言和matplotlib实现路径的动态显示和交互式绘图(和Matlab功能类似). Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统

随机推荐