由static_cast和dynamic_cast到C++对象占用内存的全面分析

static_cast和dynamic_cast是C++的类型转换操作符。编译器隐式执行的任何类型转换都可以由static_cast显式完成,即父类和子类之间也可以利用static_cast进行转换。而dynamic_cast只能用于类之间的转换。那么dynamic_cast的存在还有什么意义呢?因为dynamic_cast提供了一个重要的特性:运行时类型检查来保证转换的安全性。

用static_cast转换存在的危险

我们知道,一个基类指针不需要进行明确的转换操作,就可以指向基类对象或者派生类对象。比如:

class Base{
  //…
};
class Derived{
  //…
};
int main{
  Base *p = new Base();//OK
  Base *p = new Derived();//OK
}

上面的两种定义都是正确的,那么如果想反过来,让一个子类指针指向父类对象呢?如下代码:

class Base{
  //…
};
class Derived{
  //…
};
int main{
  Derived *p = new Base();//error
  Derived *p = static_cast<Derived*>(new Base());//OK
}

如果直接把Base类型的指针转换为Derived类型的指针,那么编译时会报错。如果在转换时加上static操作符则可以顺利通过编译。但是这种做法是十分危险的,在运行期时可能会出现一些难以预测和查找的错误。如下面代码:

class Base{
  public:
    Base():m_b(4){};
    int m_b;
void m_funcB(){cout << "base" << endl;};
};
class Derived:public Base{
  public:
    Derived():m_d(3){};
    int m_d;
    void m_funcD(){cout << "derived" << endl;};
};
int main(){
  Derived* p = static_cast<Derived*>(new Base());
  cout << p->m_d << endl;
  p->m_funcD();
}

虽然p是Derived类型的指针,但是实际却指向了Base对象,而Base对象不存在m_d这个数据成员,因此输出的结果不可预测(在我的机子上一直输出0)。正是这种不可预测才导致难以追踪的错误,试想,如果执行这段代码会崩溃,那么还是比较还排查的,但是现在并不一定崩溃,只是执行的结果和我们的预测不一致,可能将导致连环的逻辑错误,这就像给自己挖了一个坑或者定时炸弹。

但是很奇怪的一点是,执行p->m_funcD()这一句后,居然可以打印出”derived”。这是怎么回事?m_funcD明明是类Derived的函数,而且类Base里并不存在这个函数,这个我们留在后面说明。

利用dynamic_cast保证转换的安全

原则上,我们不应该让子类指针指向父类的对象。但是如果写下了上面这样的代码,我们希望可以有一种检查机制可以帮助我们发现这个问题,这样就可以避免对转换后的指针进行操作,造成不可预料的后果。

C++是支持运行期类型识别的(RTTI),这种机制除了帮助我们实现多态,还能在类型转换时进行安全检查。回到上面的代码,我们稍作修改:

class Base{
  public:
    Base():m_b(4){};
    int m_b;
    virtual void m_funcB(){cout << "base" << endl;};
};

class Derived:public Base{
  public:
    Derived():m_d(3){};
    int m_d;
    void m_funcD(){cout << "derived" << endl;};
};
int main(){
  Derived* p = dynamic_cast<Derived*>(new Base());
  cout << p->m_d << endl;
  p->m_funcD();
}

运行结果会是什么?程序崩溃了。原因就是我们执行了p->m_d,而p这个时候是一个空指针。原因在于利用dynamic_cast进行类型转换时会进行安全检查,在这里我们将一个父类指针转换为子类指针,这被认为是一个无效操作,因此返回NULL,因此p成了空指针。所以当我们利用dynamic_cast进行了转换后,只要对得到的指针进行检查,就可以知道转换是否成功。static_cast则没有提供这种检查,这就是dynamic_cast比static_cast安全的原因。

现在稍微离开一下正题,如果把打印m_d这句注释掉,执行p->m_funcD()这一句后,发现还是能够打印出”derived”。等我们总结dynamic_cast和static_cast的区别后就对这个现象进行讨论。

dynamic_cast和static_cast的区别:

dynamic_cast可以实现运行期类型安全检查,是一种更加安全的方法,但是仅仅对多态类型有效,而且只能用于指针或者引用类型的转换上。static_cast则可应用与任何类型,而且不需要类型实现了多态。static_cast的应用更加广泛,但是dynamic_cast更加强大和安全。

对象占用内存分析:

下面看一下我们两次提到的现象:为什么通过一个实际指向了基类对象的子类指针调用子类的方法,既然没有出现错误并且可以顺利调用?

一个类无非就是包含两种成员:数据和方法。那么当我们实例化出一个对象的时候,这个对象包含了哪些东西,实际占用的内存大小是多少?写一段代码试一试:

class Base{
  public:
    Base():m_b(4){};
    int m_b;
    virtual void m_funcB(){cout << "base" << endl;};
};
class Derived:public Base{
  public:
    Derived():m_d(3){};
    int m_d;
    void m_funcD(){cout << "derived" << endl;};
};
int main(){
  cout << sizeof(Base) << endl;
  cout << sizeof(Derived) << endl;
}

打印出的结果分别是8和12。

那么一个类或者说对象占用的内存到底怎么计算呢?以Base为例,首先成员变量m_b占用了4个字节,其次,由于m_funcB是虚函数,因此要有一张虚函数表,其实就是一个指向表的指针,无论是什么类型的指针,占用的大小总是4字节,因此base占用了8个字节的大小。而Derived除了继承了Base的成员m_b之外,也保存了虚函数表的地址,还有自己的成员变量m_d,所以占用了12个字节。

或者有人会问:构造函数呢?还有虚函数本身不是还有函数体吗?难道不用计算进去?确实,类的函数是不会存储在实例化出来的对象里的,试想,对于每个对象,函数实现都是一样的,如果每实例化一个对象就存储一次函数体,不是毫无必要并且对内存使用而言是极大的浪费?

函数编译出来后是作为代码的一部分放在代码段中的,因此只要我们定义了Derived指针,无论这个实际指针指向什么对象,由于程序“事先”已经知道了这个方法属于哪个类,只要指针的类型正确,都可以正确找到调用函数的入口。所以即使我们的代码这么写,也是可以正确运行的:

void * p2 = (int*)0;
Derived* p3= (Derived*)p2;
cout << p3->m_funcD() << endl;

不管把什么地址赋给p2,都能正确地执行m_funcD函数。当然如果p3定义成其他类型,那么编译就会出错。

如果执行以下代码:

void * p2 = (int*)0;
Derived* p3= (Derived*)p2;
cout << p3->m_d << endl;

那么程序就会出现错误了,因为和成员函数不同,成员变量是每个对象都会在内存中用实际的内存地址存储,所以说成员函数属于类,成员变量属于各自的对象。

以上就是小编为大家带来的由static_cast和dynamic_cast到C++对象占用内存的全面分析全部内容了,希望大家多多支持我们~

(0)

相关推荐

  • C++ 中类对象类型的转化的实例详解

    C++ 中类对象类型的转化的实例详解 前言: 存在继承关系的类的对象之间可以进行转化: 子类对象类型可以转化为父类类型, 例如,一个函数的参数是父类对象,而传递进来的参数是子类对象,那么子类对象类型自动转化父类对象: 但是父类对象不能转为子类对象. 代码: # include <iostream> using namespace std; class A { public: void printm() { cout<<"A::print()"<<en

  • C++使struct对象拥有可变大小的数组(详解)

    首先摘录<Inside The C++ Object Model>中的一段话: 把单一元素的数组放在一个struct的尾端,于是每个 struct objects 可以拥有可变大小的数组: struct mumble { char pc[1]; }; //获取一个字符串,然后为struct本身和该字符串配置足够的内存 struct mumble *pmumbl = (struct mumble*)malloc(sizeof(struct mumble) + strlen(string) + 1

  • C++对象的浅复制和深复制详解及简单实例

    C++对象的浅复制和深复制详解及简单实例 浅复制:两个对象复制完成后共享某些资源(内存),其中一个对象的销毁会影响另一个对象 深复制:两个对象复制完成后不会共享任何资源,其中一个对象的销毁不会影响另一个对象 下面我们来看一段代码,以便直观的理解: #include<iostream> #include<string.h> using namespace std; class Student { int no; char *pname; public: Student(); Stud

  • 浅谈c++ vector和map的遍历和删除对象

    示例如下: // Aa.cpp : Defines the entry point for the console application. #include "stdafx.h" #include <vector> #include <map> #include <iostream> using namespace std; int main(int argc, char* argv[]) { printf("Hello World!\n

  • C#如何调用原生C++ COM对象详解

    前言 最近在工作中遇到一个问题,为了跨平台在.net core中使用COM,不能使用Windows下的COM注册机制,但是可以直接把IUnknown指针传给C#,转换为指针,再转换为C#的接口(interface). 做了这方面的研究,但最终我没有使用这套技术,因为对IDispatch::Invoke的分发太麻烦了,又不能借助ATL与VS开发环境的IDL能力.所以没有继续研究事件订阅(C#是event,C++COM是IConnectionPoint). C++中需要做的: 简单点,实现IDisp

  • c++ 面向对象的类设计

    类的设计在于用恰到好处的信息来完整表达一个职责清晰的概念,恰到好处的意思是不多也不少,少了,就概念就不完整:多了,就显得冗余,累赘,当然特例下,允许少许的重复,但是,这里必须要有很好的理由.冗余往往就意味着包含了过多的信息,概念的表达不够精准,好比goto,指针,多继承这些货色,就是因为其过多的内涵,才要严格限制其使用.好像,more effective c++上说的,class的成员函数,应该是在完整的情况下保持最小化.但是,这里我们的出发点,是成员数据的完整最小化. 最小化的好处是可以保持概

  • 用C++面向对象的方式动态加载so的方法

    这几天在写一个server,由于框架相同,仅仅是获取数据源的地方有区别,所以,研究了一下如何使用面向对象的方法来动态加载so. 主要思想就是: 1.通过一个函数能够获得一个基类的指针,这样在调用基类的函数的时候,就能自动调用子类的实现了. 2.存储so对象的指针应该是外层类的一个static变量. 详细还是看代码吧: 1)首先定义一个公共的头文件,里面存储的基类的定义:(需要注意的就是,只要不是纯虚函数,那么就一定要有实现:还有就是析构函数需要为虚函数) so和主调程序都需要包含这个头文件. s

  • 由static_cast和dynamic_cast到C++对象占用内存的全面分析

    static_cast和dynamic_cast是C++的类型转换操作符.编译器隐式执行的任何类型转换都可以由static_cast显式完成,即父类和子类之间也可以利用static_cast进行转换.而dynamic_cast只能用于类之间的转换.那么dynamic_cast的存在还有什么意义呢?因为dynamic_cast提供了一个重要的特性:运行时类型检查来保证转换的安全性. 用static_cast转换存在的危险 我们知道,一个基类指针不需要进行明确的转换操作,就可以指向基类对象或者派生类

  • java各种类型对象占用内存情况分析

    前言 其实一般的程序猿根本不用了解这么深,只有当你到了一定层次,需要了解jvm内部运行机制,或者高并发多线程下,你写的代码对内存有影响,你想做性能优化.等等等等,一句话,当你想深入了解java对象在内存中,如何存储,或者每个对象占用多大空间时,你会感谢这篇文章 本文主要分析jvm中的情况,实验环境为64位window10系统.JDK1.8,使用JProfiler进行结论验证 很多描述以及 概念是基于你懂基本java知识的,如果你看起来有点吃力,要加油咯 本片更偏重验证,更多理论,请参考:http

  • java boolean占用内存大小说明

    答案:4B或1B 详细 1.如果boolean是单独使用:boolean占4个字节. 2.如果boolean是以boolean数组形式使用:boolean占1个字节 解释 1.JVM没有提供boolean类型专用的字节指令,而是使用int相关指令来代替. 2.对boolean数组的访问与修改,会共用byte数组的baload和bastore指令. 分析结论 上面的第一个结论是说:boolean在底层实际调用int,那么既然int占4个字节,boolean页自然占4个字节.即 boolean类型占

  • Java对象的内存布局全流程

    目录 对象内存布局 对象占用内存空间 证明对象内存布局 开始先抛出一个问题:一个对象o,Object o = new Object();创建完成后会占用多少字节的内存? 要能回答这个问题,就需要了解java对象的内存布局. 对象内存布局 一个Java对象在内存中包括对象头.实例数据和对齐填充三个部分.如下图所示: 对象头 Mark Word:包含一系列的标记位比如hashcode.GC分代年龄.偏向锁位,锁标志位等.这个Mark Word在对象被加了不同量级的锁时所包含的内容和布局都有所不同,这

  • C++中的类型转换static_cast、dynamic_cast、const_cast和reinterpret_cast总结

    前言 这篇文章总结的是C++中的类型转换,这些小的知识点,有的时候,自己不是很注意,但是在实际开发中确实经常使用的.俗话说的好,不懂自己写的代码的程序员,不是好的程序员:如果一个程序员对于自己写的代码都不懂,只是知道一昧的的去使用,终有一天,你会迷失你自己的. C++中的类型转换分为两种: 1.隐式类型转换: 2.显式类型转换. 而对于隐式变换,就是标准的转换,在很多时候,不经意间就发生了,比如int类型和float类型相加时,int类型就会被隐式的转换位float类型,然后再进行相加运算.而关

  • C++强制类型转换(static_cast、dynamic_cast、const_cast、reinterpret_cast)

    目录 1. c强制转换与c++强制转换 2. static_cast.dynamic_cast.const_cast.reinterpret_cast dynamic_cast const_cast reinterpret_cast 3. c++强制转换注意事项 1. c强制转换与c++强制转换 c语言强制类型转换主要用于基础的数据类型间的转换,语法为: (type-id)expression//转换格式1 type-id(expression)//转换格式2 c++除了能使用c语言的强制类型转

  • 如何计算Java对象占用了多少空间?

    本文介绍了计算Java对象占用了多少空间的方法,分享给大家供大家参考,具体内容如下 一.对象头 对象的头部至少有两个WORD,如果是数组的话,那么三个WORD,内容如下: 1.对象的HashCode,锁信息等 2.到对象类型数据的指针 3.数组的长度(如果是数组的话) 二.规则 首先,任何对象都是8字节对齐,属性按照[long,double].[int,float].[char,short].[byte,boolean].reference的顺序存放,举个例子: public class Tes

  • 计算一个Java对象占用字节数的方法

    本文实例讲述了如何计算(或者说,估算)一个Java对象占用的内存数量的方法.分享给大家供大家参考.具体分析如下: 通常,我们谈论的堆内存使用的前提是以"一般情况"为背景的.不包括下面两种情形:   某些情况下,JVM根本就没有把Object放入堆中.例如:原则上讲,一个小的thread-local对象存在于栈中,而不是在堆中. 被Object占用内存的大小依赖于Object的当前状态.例如:Object的同步锁是否生效,或者,Object是否正在被回收. 我们先来看看在堆中单个的Obj

  • Android中图片占用内存的深入分析

    目录 前言 一.图片占用内存与宽.高.色彩模式的关系 二.图片占用内存与存放文件夹的关系 三.从文件中加载图片和从网络加载图片占用内存 四.色彩模式 五.总结 前言 Android 在加载图片的时候一定会考虑到的一个点就是如何防止 OOM,那么一张图片在加载的时候到底会占用多少内存呢?有哪些因素会影响占用的内存呢?知道了这些,我们才能知道可以从哪些点去优化,从而避免 OOM. 一.图片占用内存与宽.高.色彩模式的关系 首先我们准备一张 1920*1080 的图片: 然后我使用的测试机是 Redm

  • PHP数组实际占用内存大小原理解析

    一般来说,PHP数组的内存利用率只有 1/10, 也就是说,一个在C语言里面100M 内存的数组,在PHP里面就要1G.下面我们可以粗略的估算PHP数组占用内存的大小,首先我们测试1000个元素的整数占用的内存: <?php echo memory_get_usage() , '<br>'; $start = memory_get_usage(); $a = Array(); for ($i=0; $i<1000; $i++) { $a[$i] = $i + $i; } $mid

随机推荐