opencv提取外部轮廓并在外部加矩形框

这段时间一直在用opencv搞图像处理的问题,发现虽然可调用的函数多,但是直接找相应代码还是很困难,就行寻找连通域,并在连通域外侧加框,对于习惯使用Mat矩形操作的我,真心感觉代码少之又少,为防止以后自己还会用到,特在此记录一下。

要对下面的图像进行字符的边缘检测。

程序中具体的步骤为:

(1)灰度化、二值化

(2)图像膨胀

(3)检测膨胀图像的边缘并叫外矩形框

实现代码如下:

#include "stdafx.h"
#include "stdio.h"
#include "Base_process.h"
#include "opencv/cv.h"
#include "opencv/highgui.h"
#include <opencv2/opencv.hpp>
#include <tchar.h>
#include <iostream>
#include <fstream>

using namespace std;
using namespace cv;

void main()
{
  Mat src = imread("D:\\Recognize_Form_Project\\test_images\\0.jpg");//图片路径/*image180.jpg*/

 Mat gray_image;
 cvtColor(src, gray_image, CV_BGR2GRAY);
 imwrite("src.jpg", src);

 Mat binary_image;
 adaptiveThreshold(gray_image, binary_image, 255, CV_ADAPTIVE_THRESH_MEAN_C,
 CV_THRESH_BINARY_INV, 25, 10); ///局部自适应二值化函数

 imwrite("erzhi.jpg", binary_image);

 //去噪
 Mat de_noise = binary_image.clone();
    //中值滤波

 medianBlur(binary_image, de_noise, 5);

 /////////////////////////  膨胀 ////////////////////
 Mat dilate_img;
 Mat element = getStructuringElement(MORPH_RECT, Size(20, 20/*15, 15*/));
 dilate(de_noise, dilate_img,element);
 imwrite("dilate.jpg", dilate_img);

 //外部加框
 //检测连通域,每一个连通域以一系列的点表示,FindContours方法只能得到第一个域
 vector<vector<Point>> contours;
 vector<Vec4i> hierarchy;
 findContours(dilate_img, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);//CV_RETR_EXTERNAL只检测外部轮廓,可根据自身需求进行调整

 Mat contoursImage(dilate_img.rows, dilate_img.cols, CV_8U, Scalar(255));
 int index = 0;
 for (; index >= 0; index = hierarchy[index][0]) {
 cv::Scalar color(rand() & 255, rand() & 255, rand() & 255);
 // for opencv 2
 // cv::drawContours(dstImage, contours, index, color, CV_FILLED, 8, hierarchy);//CV_FILLED所在位置表示轮廓线条粗细度,如果为负值(如thickness==cv_filled),绘制在轮廓内部
 // for opencv 3
 //cv::drawContours(contoursImage, contours, index, color, cv::FILLED, 8, hierarchy);

 cv::drawContours(contoursImage, contours, index, Scalar(0), 1, 8, hierarchy);//描绘字符的外轮廓

 Rect rect = boundingRect(contours[index]);//检测外轮廓
 rectangle(contoursImage, rect, Scalar(0,0,255), 3);//对外轮廓加矩形框
 }

 imwrite("zt.jpg", contoursImage);

 cout << "完成检测";

 de_noise.release();
 element.release();
 dilate_img.release();
 binary_image.release();
 gray_image.release();
}

相应的结果图:

膨胀图:

连通域检测图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Opencv实现轮廓提取功能

    轮廓:一个轮廓代表一系列的点(像素),这一系列的点构成一个有序的点集,所以可以把一个轮廓理解为一个有序的点集. 在opencv中,提供了一个函数返回一个有序的点集或者有序的点集的集合(指多个有序的点集),函数findContour是从二值图像中来计算轮廓的,一般使用Canny()函数处理后的图像,因为这样的图像含有边缘像素. 寻找轮廓的API函数: findContours(image,vector<vector<Point>> contours,vector<Vec4i&g

  • Opencv提取连通区域轮廓的方法

    本文实例为大家分享了Opencv提取连通区域轮廓的具体代码,供大家参考,具体内容如下 在进行图像分割后,可能需要对感兴趣的目标区域进行提取,比较常用的方法是计算轮廓. 通过轮廓可以获得目标的一些信息: (1)目标位置 (2)目标大小(即面积) (3)目标形状(轮廓矩) 当然,轮廓不一定代表希望目标区域,阈值分割时可能造成一部分信息丢失,因此可以计算轮廓的质心坐标,再进行漫水填充. 程序中有寻找质心+填充,但效果不好,因此就不放填充后的图了. 实验结果: #include "opencv2/img

  • Opencv处理图像之轮廓提取

    本文实例为大家分享了Opencv处理图像之轮廓提取,使用cvfindContours对图像进行轮廓检测,供大家参考,具体内容如下 #include<iostream> #include<opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> int main() { IplImage* img = cvLoadImage("E:\\test.bmp",0); IplImage* img

  • python-opencv在有噪音的情况下提取图像的轮廓实例

    对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) 然后进行低通滤波处理,进行降噪 blured = cv2.blur(i

  • C语言实现opencv提取直线、轮廓及ROI实例详解

    一.Canny检测轮廓 在上一篇文章中有提到sobel边缘检测,并重写了soble的C++代码让其与matlab中算法效果一致,而soble边缘检测是基于单一阈值的,我们不能兼顾到低阈值的丰富边缘和高阈值时的边缘缺失这两个问题.而canny算子则很好的弥补了这一不足,从目前看来,canny边缘检测在做图像轮廓提取方面是最优秀的边缘检测算法. canny边缘检测采用双阈值值法,高阈值用来检测图像中重要的.显著的线条.轮廓等,而低阈值用来保证不丢失细节部分,低阈值检测出来的边缘更丰富,但是很多边缘并

  • opencv提取外部轮廓并在外部加矩形框

    这段时间一直在用opencv搞图像处理的问题,发现虽然可调用的函数多,但是直接找相应代码还是很困难,就行寻找连通域,并在连通域外侧加框,对于习惯使用Mat矩形操作的我,真心感觉代码少之又少,为防止以后自己还会用到,特在此记录一下. 要对下面的图像进行字符的边缘检测. 程序中具体的步骤为: (1)灰度化.二值化 (2)图像膨胀 (3)检测膨胀图像的边缘并叫外矩形框 实现代码如下: #include "stdafx.h" #include "stdio.h" #incl

  • 如何使用Python OpenCV提取物体轮廓详解

    通常提取物体的轮廓时,图像都存在噪声,提取效果并不理想.如提取下图的轮廓时, 提取代码: import cv2 img = cv2.imread("mouse.png") cv2.imshow("origin",img) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret,binary = cv2.threshold(gray,128,255,cv2.THRESH_BINARY) cv2.imshow("bina

  • OpenCV实现图像轮廓检测以及外接矩形

    前两篇博文分别介绍了图像的边缘检测和轮廓检测,本文接着介绍图像的轮廓检测和轮廓外接矩形: 一.代码部分: // extract_contours.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<cv.h> #include<highgui.h> using namespace cv; using namespace std; int _tmain(int argc, _TCHAR* argv[]) { /

  • opencv提取轮廓大于某个阈值的图像

    本文实例为大家分享了opencv提取轮廓大于某个阈值的图像,供大家参考,具体内容如下 #include "stdafx.h" #include "cv.h" #include "highgui.h" #include "stdio.h" #include"core/core.hpp" #include "opencv2/highgui/highgui.hpp" #include &quo

  • Python中OpenCV实现查找轮廓的实例

    本文将结合实例代码,介绍 OpenCV 如何查找轮廓.获取边界框. 代码: contours.py OpenCV 提供了 findContours 函数查找轮廓,需要以二值化图像作为输入.并指定些选项调用即可. 我们以下图作为示例: 二值化图像 代码工程 data/ 提供了小狗和红球的二值化掩膜图像: 其使用预训练好的实例分割模型来生成的,脚本可见 detectron2_seg_threshold.py.模型检出结果,如下: 模型用的 Mask R-CNN 已有预测边框.但其他模型会有只出预测掩

  • opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

    图像的轮廓检测,如计算多边形外界.形状毕竟.计算感兴趣区域等. Contours : Getting Started 轮廓 简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度. 轮廓是形状分析和物体检测和识别的有用工具 NOTE 为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回 在OpenCV中,查找轮廓是从黑色背景中查找白色对

  • openCV提取图像中的矩形区域

    改编自详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)原文是c++版,我改成了python版,供大家参考学习. 主要思想:边缘检测->轮廓检测->找出最大的面积的轮廓->找出顶点->投影变换 import numpy as np import cv2 # 这个成功的扣下了ppt白板 srcPic = cv2.imread('2345.jpg') length=srcPic.shape[0] depth=srcPic.shape[1] polyPic = srcPic shr

  • python 基于opencv 绘制图像轮廓

    图像轮廓概念 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形. 谈起轮廓不免想到边缘,它们确实很像.简单的说,轮廓是连续的,边缘并不全都连续(下图).其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手:而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓. 寻找轮廓的操作一般用于二值图像,所以通常会使用阈值分割或Canny边缘检测先得到二值图. 注意:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一

随机推荐