查看python下OpenCV版本的方法
在命令行输入以下代码:
python import cv2 cv2.__version__
以上这篇查看python下OpenCV版本的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
OpenCV+python手势识别框架和实例讲解
基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点
-
opencv python 傅里叶变换的使用
理论 傅立叶变换用于分析各种滤波器的频率特性,对于图像,2D离散傅里叶变换(DFT)用于找到频域.快速傅里叶变换(FFT)的快速算法用于计算DFT. 于一个正弦信号,x(t)=Asin(2πft),我们可以说 f 是信号的频率,如果它的频率域被接受,我们可以看到 f 的峰值.如果信号被采样来形成一个离散信号,我们得到相同的频率域,但是在[−π,π] or [0,2π]范围内是周期性的 (or [0,N] for N-point DFT). 可以将图像视为在两个方向上采样的信号.因此,在X和Y方向
-
对python opencv 添加文字 cv2.putText 的各参数介绍
如下所示: cv2.putText(img, str(i), (123,456)), font, 2, (0,255,0), 3) 各参数依次是:图片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细 其中字体可以选择 FONT_HERSHEY_SIMPLEX Python: cv.FONT_HERSHEY_SIMPLEX normal size sans-serif font FONT_HERSHEY_PLAIN Python: cv.FONT_HERSHEY_PLAIN small s
-
python opencv实现图片旋转矩形分割
有时候需要对有角度的矩形框内图像从原图片中分割出来.这里的程序思想是,先将图片进行矩形角度的旋转,使有角度的矩形处于水平状态后,根据原来坐标分割图片. 参考:python opencv实现旋转矩形框裁减功能 修改原来的程序: 1.旋转函数的输入仅为矩形的四点坐标 2.角度由公式计算出来 3.矩形四点pt1,pt2,pt3,pt4由txt文件读入 4.在旋转程序中还处理了顺时针和逆时针及出现矩形框翻转的问题. 代码: # -*- coding:utf-8 -*- import cv2 from m
-
python opencv旋转图像(保持图像不被裁减)
本文实例为大家分享了python opencv旋转图像的具体代码,保持图像不被裁减,供大家参考,具体内容如下 # -*- coding:gb2312 -*- import cv2 from math import * import numpy as np img = cv2.imread("3-2.jpg") height,width=img.shape[:2] degree=45 #旋转后的尺寸 heightNew=int(width*fabs(sin(radians(degree)
-
python3+opencv3识别图片中的物体并截取的方法
如下所示: 运行环境:python3.6.4 opencv3.4.0 # -*- coding:utf-8 -*- """ Note: 使用Python和OpenCV检测图像中的物体并将物体裁剪下来 """ import cv2 import numpy as np # step1:加载图片,转成灰度图 image = cv2.imread("353.jpg") gray = cv2.cvtColor(image, cv2.C
-
使用python写的opencv实时监测和解析二维码和条形码
今天,我实现了一个很有趣的demo,它可以在视频里找到并解析二维码,然后把解析的内容实时在屏幕上显示出来. 然后我们直入主题,首先你得确保你装了opencv,python,zbar等环境.然后这个教程对于学过opencv的人可能更好理解,但是没学过也无妨,到时候也可以直接用. 比如我的电脑上的环境是opencv2.4.x,python2.7,和最新的zbar,在Ubuntu 12.12的系统下运行的 假设你的opencv已经安装好了,那么我们就可以安装zbar 你可以先更新一下 sudo apt
-
Python+OpenCV感兴趣区域ROI提取方法
方法一:使用轮廓 步骤1 """src为原图""" ROI = np.zeros(src.shape, np.uint8) #感兴趣区域ROI proimage = src.copy() #复制原图 """提取轮廓""" proimage=cv2.cvtColor(proimage,cv2.COLOR_BGR2GRAY) #转换成灰度图 proimage=cv2.adaptiveThre
-
Python OpenCV读取png图像转成jpg图像存储的方法
如下所示: import os import cv2 import sys import numpy as np path = "F:\\ImageLib\\VRWorks_360_Video _SDK_1.1\\footage14\\" print(path) for filename in os.listdir(path): if os.path.splitext(filename)[1] == '.png': # print(filename) img = cv2.imread(
-
查看python下OpenCV版本的方法
在命令行输入以下代码: python import cv2 cv2.__version__ 以上这篇查看python下OpenCV版本的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
查看Django和flask版本的方法
查看Django版本 检查是否安装成功,可以在dos下查看Django版本. 1.输入python 2.输入import django 3.输入django.get_version() 查看flask版本 检查是否安装成功,可以在dos下查看flask版本. 1.输入python 2.输入import flask 3.输入flask.__version__ 以上这篇查看Django和flask版本的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
Python下opencv库的安装过程及问题汇总
本文主要内容是python下opencv库的安装过程,涉及我在安装时遇到的问题,并且,将从网上搜集并试用的一些解决方案进行了简单的汇总,记录下来. 由于记录的是我第一次安装opencv库的过程,所以内容涵盖可能不全面,如果有出错的地方请务必指正.下面进入主题. 关于python的下载安装不再赘述,python的版本号是我们在opencv库的安装过程中需要用到的,cmd运行python可以进行查看. 通常,我们使用pip命令来安装扩展库. 打开cmd运行 pip install opencv-py
-
Python下opencv使用hough变换检测直线与圆
在数字图像中,往往存在着一些特殊形状的几何图形,像检测马路边一条直线,检测人眼的圆形等等,有时我们需要把这些特定图形检测出来,hough变换就是这样一种检测的工具. Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与常熟b,圆就会得到圆心与半径等等). 关于hough变换,核心以及难点就是关于就是有原始空间到参数空间的变换上.以直线检测为例,假设有一条直线L,
-
查看已安装tensorflow版本的方法示例
由于tensorflow版本不同,可能一些函数的调用也有变换,这时候可能需要查看tensorflow版本,可以在终端输入查询命令如下: import tensorflow as tf tf.__version__ 查询tensorflow安装路径为: tf.__path__ 查询结果如下: 根据自己的情况选择以下命令之一进行安装: pip install tensorflow==1.2 # Python 2.7; 仅支持CPU pip3 install tensorflow==1.2 # P
-
使用httplib模块来制作Python下HTTP客户端的方法
httplib 是 python中http 协议的客户端实现,可以使用该模块来与 HTTP 服务器进行交互.httplib的内容不是很多,也比较简单.以下是一个非常简单的例子,使用httplib获取google首页的html: #coding=gbk import httplib conn = httplib.HTTPConnection("www.google.cn") conn.request('get', '/') print conn.getresponse().read()
-
Python下opencv图像阈值处理的使用笔记
图像的阈值处理一般使得图像的像素值更单一.图像更简单.阈值可以分为全局性质的阈值,也可以分为局部性质的阈值,可以是单阈值的也可以是多阈值的.当然阈值越多是越复杂的.下面将介绍opencv下的三种阈值方法. (一)简单阈值 简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了.函数为cv2.threshold() 这个函数有四个参数,第一个原图像,第二个进行分类的阈值,第三个是高于(低于)阈值时赋予的新值,第四个是一个方法选择参数,常用的有: cv2.THRESH_B
-
详解python中GPU版本的opencv常用方法介绍
引言 本篇是以python的视角介绍相关的函数还有自我使用中的一些问题,本想在这篇之前总结一下opencv编译的全过程,但遇到了太多坑,暂时不太想回看做过的笔记,所以这里主要总结python下GPU版本的opencv. 主要函数说明 threshold():二值化,但要指定设定阈值 blendLinear():两幅图片的线形混合 calcHist() createBoxFilter ():创建一个规范化的2D框过滤器 canny边缘检测 createGaussianFilter():创建一个Ga
-
Python中OpenCV实现简单车牌字符切割
在Jupyter Notebook上使用Python+opencv实现如下简单车牌字符切割.关于opencv库的安装可以参考:Python下opencv库的安装过程与一些问题汇总. 1.实现代码 import cv2 import numpy as np import matplotlib.pyplot as plt from PIL import Image #读取原图片 image1=cv2.imread("123456.jpg") cv2.imshow("image1&
-
python 下 CMake 安装配置 OPENCV 4.1.1的方法
CMake 安装配置 OPENCV 4.1.1 解决各种问题 方法一 python 可以直接pip install opencv-contrib-python==3.4.x.x 安装,老版本的库包含SIFT等算法.但是,python不支持GPU的,对于JAVA等其他语言想调用opencv或者想使用更更高级的算法,那么还是必须得安装更高版本,下面介绍另外一种方法. 这个方法不提供SIFT和 SURF算法,因为这两个算法申请了专利,所有主要通过CMake设置OPENCV_ENABLE_NONFREE
随机推荐
- 简单粗暴的Redis数据备份和恢复方法
- 常用软件的静默安装方法介绍
- Python中的super用法详解
- vs2010制作简单的asp.net网站
- 浅谈.net平台下深拷贝和浅拷贝
- Android蓝牙通信聊天实现发送和接受功能
- Android开发中播放声音的两种方法分析
- JavaScript中的匀速运动和变速(缓冲)运动详细介绍
- JS添加或修改控件的样式(Class)实现方法
- 跟我学XSL(一)第1/5页
- 如何在 Access 2003 和 Access 2002 中创建 DSN 的连接到 SQLServer 对链接表
- Java集合和数组的区别
- 程序员必备,程序员四大忌
- IE 性能分析工具(asp.net环境)
- javascript 仿QQ滑动菜单效果代码
- 注册表修改之计算机病毒清除
- JavaEE微框架Spring Boot深入解读
- Android底部菜单简单应用
- 浅谈Webpack自动化构建实践指南
- 如何用python整理附件