利用python打开摄像头及颜色检测方法

最近两周由于忙于个人项目,一直未发言了,实在是太荒凉了。。。。,上周由于项目,见到Python的应用极为广泛,用起来也特别顺手,于是小编也开始着手学习Python,…下面我就汇报下今天的学习成果吧

小编运行环境unbuntu 14.0.4

首先我们先安装一下Python呗,我用的2.7,其实特别简单,一行指令就OK

sudo apt-get install python-dev

一般安装系统的时候其实python已经自带了,这步基本可以不用做,OK,我们继续往下走吧,安装python-opencv ,稍后我们需要用到opencv的库,一行指令即可,这也是小编特别喜欢linux的原因:

sudo apt-get install python-opencv

完成之后我们开始操作吧,首先同样的我们打开摄像头露个脸呗,不多说,上代码, vim pythonpractice.py 打开vim,copy以下代码即可(友情提示 python是有严格的缩进的,下面我都是四个空格缩进,各位不要复制错了):lo

lmport cv2
import numpy as np#添加模块和矩阵模块
cap=cv2.VideoCapture(0)
#打开摄像头,若打开本地视频,同opencv一样,只需将0换成("×××.avi")
while(1): # get a frame
 ret, frame = cap.read() # show a frame
 cv2.imshow("capture", frame)
 if cv2.waitKey(1) & 0xFF == ord('q'):
  break
cap.release()
cv2.destroyAllWindows()
#释放并销毁窗口

保存退出

python pythonpractice.py

小脸蛋即可出现在你的屏幕上了,下面稍微添加几行有意思的代码吧,实现蓝色背景检测,我这有瓶蓝色脉动,正好做个小实验。

import cv2
import numpy as np
cap = cv2.VideoCapture(0)# set blue thresh
lower_blue=np.array([78,43,46])
upper_blue=np.array([110,255,255])
while(1): # get a frame and show
 ret, frame = cap.read()
 cv2.imshow('Capture', frame) # change to hsv model
 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # get mask
 mask = cv2.inRange(hsv, lower_blue, upper_blue)
 cv2.imshow('Mask', mask) # detect blue
 res = cv2.bitwise_and(frame, frame, mask=mask)
 cv2.imshow('Result', res)
 if cv2.waitKey(1) & 0xFF == ord('q'):
  breakcap.release()
cv2.destroyAllWindows()

同样python pythonpractice.py 运行一下,可以把手机换成蓝色背景检测以下,下面时间就交给各位理解了,代码很简单,只有简单的几行程序。

下面有个复杂点颜色识别的代码

#!/usr/bin/python
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import time
readlower=np.array([156,179,144])
readupper=np.array([180,255,255])
readlower1 = np.array([0, 128, 146])
readupper2 = np.array([5, 255, 255])
lowerarry=[[readlower,readupper,'red'],[readlower1,readupper2,'red1']]
capture=cv2.VideoCapture('4.mp4')
while True:
 ret,frame=capture.read()
 print frame.shape
 frame=cv2.resize(frame,(640,480))
 if ret==False:
  print("video is erro")
 #cv2.imshow('xiaorun',frame)
 hsv=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
 for colormin,colermax,name in lowerarry:
  mask=cv2.inRange(hsv,colormin,colermax)
  #res = cv2.bitwise_and(frame, frame, mask=mask)
 #mask=cv2.erode(mask,None,iterations=1)
 mask=cv2.dilate(mask,None,iterations=25)
 ret, binary = cv2.threshold(mask,15, 255, cv2.THRESH_BINARY)
 cv2.imshow('result',binary)
 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
 closed = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel)
 cv2.imshow('closed', closed)
 #erode = cv2.erode(closed, None, iterations=4)
 #cv2.imshow('erode', erode)
 dilate = cv2.dilate(closed, None, iterations=50)
 cv2.imshow('dilate', dilate)
 _,contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 #res=_.copy()
 for con in contours:
  x, y, w, h = cv2.boundingRect(con) # 将轮廓分解为识别对象的左上角坐标和宽、高
  # 在图像上画上矩形(图片、左上角坐标、右下角坐标、颜色、线条宽度)
  cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0,0), 3)

 cv2.imshow('res',frame)
 key=cv2.waitKey(1)
 if key==ord('q'):
  break

小编只是想说明以下,一定要学以致用,任何一种编程语言都是倒腾两天就直接上手的,按部就班的学习语法,那样不知何时才能出师了,祝各位玩得high在机器视觉上

以上这篇利用python打开摄像头及颜色检测方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python通过PIL获取图片主要颜色并和颜色库进行对比的方法

    本文实例讲述了Python通过PIL获取图片主要颜色并和颜色库进行对比的方法.分享给大家供大家参考.具体分析如下: 这段代码主要用来从图片提取其主要颜色,类似Goolge和Baidu的图片搜索时可以指定按照颜色搜索,所以我们先需要将每张图片的主要颜色提取出来,然后将颜色划分到与其最接近的颜色段上,然后就可以按照颜色搜索了. 在使用google或者baidu搜图的时候会发现有一个图片颜色选项,感觉非常有意思,有人可能会想这肯定是人为的去划分的,呵呵,有这种可能,但是估计人会累死,开个玩笑,当然是通

  • python获取图片颜色信息的方法

    本文实例讲述了python获取图片颜色信息的方法.分享给大家供大家参考.具体分析如下: python的pil模块可以从图片获得图片每个像素点的颜色信息,下面的代码演示了如何获取图片所有点的颜色信息和每种颜色的数量. from PIL import Image image = Image.open("jb51.gif") image.getcolors() 返回结果如下 复制代码 代码如下: ..., (44, (72, 64, 55, 255)), (32, (231, 208, 14

  • python opencv检测目标颜色的实例讲解

    实例如下所示: # -*- coding:utf-8 -*- __author__ = 'kingking' __version__ = '1.0' __date__ = '14/07/2017' import cv2 import numpy as np import time if __name__ == '__main__': Img = cv2.imread('example.png')#读入一幅图像 kernel_2 = np.ones((2,2),np.uint8)#2x2的卷积核

  • python中matplotlib的颜色及线条控制的示例

    下次用python画图的时候选色选点都可以直接参考这边,牛逼!分享给大家,也给自己留个笔记. 参考网址: http://stackoverflow.com/questions/22408237/named-colors-in-matplotlib http://stackoverflow.com/questions/8409095/matplotlib-set-markers-for-individual-points-on-a-line 第二个参考网址给出了linestyle可选参数: '-'

  • 利用Python实现颜色色值转换的小工具

    先看看Zeplin 的颜色色值显示示例 原有处理方式 因为我会 Python (仅限于终端输入 python 然后当做计算器算,或者用 hex() 函数把十进制转换成十六进制),所以遇到这样的问题我当然是采用python 的 hex() 函数做转换,然后手动结果输入到 Android Studio 中. 采用 hex 函数手动转换色值 动机 人总是懒得,想要写这个小工具已经很久了,我也打过有过构思就是: 输入: 类似 RGB 的十进制值(110, 122 138),用空格或者逗号分割一下. 输出

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

  • Python实现PS图像调整颜色梯度效果示例

    本文实例讲述了Python实现PS图像调整颜色梯度效果.分享给大家供大家参考,具体如下: 这里用 Python 实现 PS 中的色彩图,可以看到颜色的各种渐变,具体的效果可以参考附录说明 和之前的程序相比,这里利用矩阵的运算替代了 for 循环,提升了运行的效率. import numpy as np import matplotlib.pyplot as plt from skimage import io import numpy.matlib from skimage import img

  • python在linux中输出带颜色的文字的方法

    在开发项目过程中,为了方便调试代码,经常会向stdout中输出一些日志,默认的这些日志就直接显示在了终端中.而一般的应用服务器,第三方库,甚至服务器的一些通告也会在终端中显示,这样就搅乱了我们想要的信息. 我们可以通过对有用的信息设置不同颜色来达到醒目的效果,因为我平时都是在linux下开发,而linux终端中的颜色是用转义序列控制的,转义序列是以ESC开头,可以用\033完成相同的工作(ESC的ASCII码用十进制表示就是27,等于用八进制表示的33). 书写格式,和相关说明如下: 复制代码

  • Python图像处理之颜色的定义与使用分析

    本文实例讲述了Python图像处理之颜色的定义与使用.分享给大家供大家参考,具体如下: python中的颜色相关的定义在matplotlib模块中,为方便使用,这里给大家展示一下在这个模块中都定义了哪些选颜色. 1.颜色名称的导出 导出代码如下: import matplotlib for name, hex in matplotlib.colors.cnames.iteritems(): print(name, hex) 导出结果如下: names = { 'aliceblue':      

  • python实现颜色rgb和hex相互转换的函数

    本文实例讲述了python实现颜色rgb和hex相互转换的函数.分享给大家供大家参考.具体分析如下: 下面的python代码提供了两个函数分别用来将rgb表示的颜色转换成hex值,hex转换成rgb,rgb为一个三个数的元祖,如(128,255,28),hex为数字876645 def hex2rgb(hexcolor): rgb = [(hexcolor >> 16) & 0xff, (hexcolor >> 8) & 0xff, hexcolor & 0

随机推荐