mysql的3种分表方案

一、先说一下为什么要分表:
当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。

根据个人经验,mysql执行一个sql的过程如下:
1、接收到sql; 
2、把sql放到排队队列中;
3、执行sql; 
4、返回执行结果。
在这个执行过程中最花时间在什么地方呢?第一,是排队等待的时间,第二,sql的执行时间。其实这二个是一回事,等待的同时,肯定有sql在执行。所以我们要缩短sql的执行时间。

mysql中有一种机制是表锁定和行锁定,为什么要出现这种机制,是为了保证数据的完整性,我举个例子来说吧,如果有二个sql都要修改同一张表的同一条数据,这个时候怎么办呢,是不是二个sql都可以同时修改这条数据呢?很显然mysql对这种情况的处理是,一种是表锁定(myisam存储引擎),一个是行锁定(innodb存储引擎)。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。如果数据太多,一次执行的时间太长,等待的时间就越长,这也是我们为什么要分表的原因。

二、分表

1,做mysql集群,例如:利用mysql cluster ,mysql proxy,mysql replication,drdb等等

有人会问mysql集群,根分表有什么关系吗?虽然它不是实际意义上的分表,但是它启到了分表的作用,做集群的意义是什么呢?为一个数据库减轻负担,说白了就是减少sql排队队列中的sql的数量,举个例子:有10个sql请求,如果放在一个数据库服务器的排队队列中,他要等很长时间,如果把这10个sql请求,分配到5个数据库服务器的排队队列中,一个数据库服务器的队列中只有2个,这样等待时间是不是大大的缩短了呢?这已经很明显了。所以我把它列到了分表的范围以内,我做过一些mysql的集群:

linux mysql proxy 的安装,配置,以及读写分离
mysql replication 互为主从的安装及配置,以及数据同步
优点:扩展性好,没有多个分表后的复杂操作(php代码)
缺点:单个表的数据量还是没有变,一次操作所花的时间还是那么多,硬件开销大。

2,预先估计会出现大数据量并且访问频繁的表,将其分为若干个表

这种预估大差不差的,论坛里面发表帖子的表,时间长了这张表肯定很大,几十万,几百万都有可能。 聊天室里面信息表,几十个人在一起一聊一个晚上,时间长了,这张表的数据肯定很大。像这样的情况很多。所以这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。以聊天信息表为例:

我事先建100个这样的表,message_00,message_01,message_02……….message_98,message_99.然后根据用户的ID来判断这个用户的聊天信息放到哪张表里面,你可以用hash的方式来获得,可以用求余的方式来获得,方法很多,各人想各人的吧。下面用hash的方法来获得表名:

代码如下:

<?php
function get_hash_table($table,$userid) {
 $str = crc32($userid);
 if($str<0){
  $hash = "0".substr(abs($str), 0, 1);
 }else{
  $hash = substr($str, 0, 2);
 }
 return $table."_".$hash;
}

echo get_hash_table('message' , 'user18991');     //结果为message_10
echo get_hash_table('message' , 'user34523');    //结果为message_13
?>

说明一下,上面的这个方法,告诉我们user18991这个用户的消息都记录在message_10这张表里,user34523这个用户的消息都记录在message_13这张表里,读取的时候,只要从各自的表中读取就行了。

优点:避免一张表出现几百万条数据,缩短了一条sql的执行时间

缺点:当一种规则确定时,打破这条规则会很麻烦,上面的例子中我用的hash算法是crc32,如果我现在不想用这个算法了,改用md5后,会使同一个用户的消息被存储到不同的表中,这样数据乱套了。扩展性很差。

3,利用merge存储引擎来实现分表

我觉得这种方法比较适合,那些没有事先考虑,而已经出现了得,数据查询慢的情况。这个时候如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码,因为程序里面的sql语句已经写好了,现在一张表要分成几十张表,甚至上百张表,这样sql语句是不是要重写呢?举个例子,我很喜欢举例子

mysql>show engines;的时候你会发现mrg_myisam其实就是merge。


代码如下:

mysql> CREATE TABLE IF NOT EXISTS `user1` (
 ->   `id` int(11) NOT NULL AUTO_INCREMENT,
 ->   `name` varchar(50) DEFAULT NULL,
 ->   `sex` int(1) NOT NULL DEFAULT '0',
 ->   PRIMARY KEY (`id`)
 -> ) ENGINE=MyISAM  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;
Query OK, 0 rows affected (0.05 sec)

mysql> CREATE TABLE IF NOT EXISTS `user2` (
 ->   `id` int(11) NOT NULL AUTO_INCREMENT,
 ->   `name` varchar(50) DEFAULT NULL,
 ->   `sex` int(1) NOT NULL DEFAULT '0',
 ->   PRIMARY KEY (`id`)
 -> ) ENGINE=MyISAM  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO `user1` (`name`, `sex`) VALUES('张映', 0);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO `user2` (`name`, `sex`) VALUES('tank', 1);
Query OK, 1 row affected (0.00 sec)

mysql> CREATE TABLE IF NOT EXISTS `alluser` (
 ->   `id` int(11) NOT NULL AUTO_INCREMENT,
 ->   `name` varchar(50) DEFAULT NULL,
 ->   `sex` int(1) NOT NULL DEFAULT '0',
 ->   INDEX(id)
 -> ) TYPE=MERGE UNION=(user1,user2) INSERT_METHOD=LAST AUTO_INCREMENT=1 ;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> select id,name,sex from alluser;
+----+--------+-----+
| id | name   | sex |
+----+--------+-----+
|  1 | 张映    |   0 |
|  1 | tank   |   1 |
+----+--------+-----+
2 rows in set (0.00 sec)

mysql> INSERT INTO `alluser` (`name`, `sex`) VALUES('tank2', 0);
Query OK, 1 row affected (0.00 sec)

mysql> select id,name,sex from user2
 -> ;
+----+-------+-----+
| id | name  | sex |
+----+-------+-----+
|  1 | tank  |   1 |
|  2 | tank2 |   0 |
+----+-------+-----+
2 rows in set (0.00 sec)

mysql> CREATE TABLE IF NOT EXISTS `user1` (  ->   `id` int(11) NOT NULL AUTO_INCREMENT,  ->   `name` varchar(50) DEFAULT NULL,  ->   `sex` int(1) NOT NULL DEFAULT '0',  ->   PRIMARY KEY (`id`)  -> ) ENGINE=MyISAM  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ; Query OK, 0 rows affected (0.05 sec)  mysql> CREATE TABLE IF NOT EXISTS `user2` (  ->   `id` int(11) NOT NULL AUTO_INCREMENT,  ->   `name` varchar(50) DEFAULT NULL,  ->   `sex` int(1) NOT NULL DEFAULT '0',  ->   PRIMARY KEY (`id`)  -> ) ENGINE=MyISAM  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ; Query OK, 0 rows affected (0.01 sec)  mysql> INSERT INTO `user1` (`name`, `sex`) VALUES('张映', 0); Query OK, 1 row affected (0.00 sec)  mysql> INSERT INTO `user2` (`name`, `sex`) VALUES('tank', 1); Query OK, 1 row affected (0.00 sec)  mysql> CREATE TABLE IF NOT EXISTS `alluser` (  ->   `id` int(11) NOT NULL AUTO_INCREMENT,  ->   `name` varchar(50) DEFAULT NULL,  ->   `sex` int(1) NOT NULL DEFAULT '0',  ->   INDEX(id)  -> ) TYPE=MERGE UNION=(user1,user2) INSERT_METHOD=LAST AUTO_INCREMENT=1 ; Query OK, 0 rows affected, 1 warning (0.00 sec)  mysql> select id,name,sex from alluser;
+----+--------+-----+
| id | name   | sex |
+----+--------+-----+
|  1 |  张映   |   0 |
|  1 | tank   |   1 |
+----+--------+-----+
2 rows in set (0.00 sec)

mysql> INSERT INTO `alluser` (`name`, `sex`) VALUES('tank2', 0); Query OK, 1 row affected (0.00 sec)  mysql> select id,name,sex from user2  -> ;

+----+-------+-----+
| id | name  | sex |
+----+-------+-----+
|  1 | tank  |   1 |
|  2 | tank2 |   0 |
+----+-------+-----+
2 rows in set (0.00 sec)

从上面的操作中,我不知道你有没有发现点什么?假如我有一张用户表user,有50W条数据,现在要拆成二张表user1和user2,每张表25W条数据,


代码如下:

INSERT INTO user1(user1.id,user1.name,user1.sex)SELECT (user.id,user.name,user.sex)FROM user where user.id <= 250000

INSERT INTO user2(user2.id,user2.name,user2.sex)SELECT (user.id,user.name,user.sex)FROM user where user.id > 250000

这样我就成功的将一张user表,分成了二个表,这个时候有一个问题,代码中的sql语句怎么办,以前是一张表,现在变成二张表了,代码改动很大,这样给程序员带来了很大的工作量,有没有好的办法解决这一点呢?办法是把以前的user表备份一下,然后删除掉,上面的操作中我建立了一个alluser表,只把这个alluser表的表名改成user就行了。但是,不是所有的mysql操作都能用的

a,如果你使用 alter table 来把 merge 表变为其它表类型,到底层表的映射就被丢失了。取而代之的,来自底层 myisam 表的行被复制到已更换的表中,该表随后被指定新类型。

b,网上看到一些说replace不起作用,我试了一下可以起作用的。晕一个先


代码如下:

mysql> UPDATE alluser SET sex=REPLACE(sex, 0, 1) where id=2;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> select * from alluser;
+----+--------+-----+
| id | name   | sex |
+----+--------+-----+
|  1 | 张映    |   0 |
|  1 | tank   |   1 |
|  2 | tank2  |   1 |
+----+--------+-----+
3 rows in set (0.00 sec)

mysql> UPDATE alluser SET sex=REPLACE(sex, 0, 1) where id=2; Query OK, 1 row affected (0.00 sec) Rows matched: 1  Changed: 1  Warnings: 0  mysql> select * from alluser;
 +----+--------+-----+
 | id | name   | sex |
 +----+--------+-----+
 |  1 | 张映    |   0 |
 |  1 | tank   |   1 |
 |  2 | tank2  |   1 |
 +----+--------+-----+
 3 rows in set (0.00 sec)

c,一个 merge 表不能在整个表上维持 unique 约束。当你执行一个 insert,数据进入第一个或者最后一个 myisam 表(取决于 insert_method 选项的值)。mysql 确保唯一键值在那个 myisam 表里保持唯一,但不是跨集合里所有的表。

d,当你创建一个 merge 表之时,没有检查去确保底层表的存在以及有相同的机构。当 merge 表被使用之时,mysql 检查每个被映射的表的记录长度是否相等,但这并不十分可靠。如果你从不相似的 myisam 表创建一个 merge 表,你非常有可能撞见奇怪的问题。

c和d在网上看到的,没有测试,大家试一下吧。

优点:扩展性好,并且程序代码改动的不是很大

缺点:这种方法的效果比第二种要差一点

三、总结一下

上面提到的三种方法,我实际做过二种,第一种和第二种。第三种没有做过,所以说的细一点。哈哈。做什么事都有一个度,超过个度就过变得很差,不能一味的做数据库服务器集群,硬件是要花钱买的,也不要一味的分表,分出来1000表,mysql的存储归根到底还以文件的形势存在硬盘上面,一张表对应三个文件,1000个分表就是对应3000个文件,这样检索起来也会变的很慢。我的建议是

方法1和方法2结合的方式来进行分表
方法1和方法3结合的方式来进行分表

我的二个建议适合不同的情况,根据个人情况而定,我觉得会有很多人选择方法1和方法3结合的方式

(0)

相关推荐

  • 基于MySQL分区性能的详细介绍

    一,      分区概念  分区允许根据指定的规则,跨文件系统分配单个表的多个部分.表的不同部分在不同的位置被存储为单独的表.MySQL从5.1.3开始支持Partition. 分区和手动分表对比 手动分表  分区 多张数据表 一张数据表 重复数据的风险 没有数据重复的风险 写入多张表 写入一张表 没有统一的约束限制 强制的约束限制 MySQL支持RANGE,LIST,HASH,KEY分区类型,其中以RANGE最为常用: Range(范围)–这种模式允许将数据划分不同范围.例如可以将一个表通过年

  • mysql的分区技术详细介绍

    一.概述 当 MySQL的总记录数超过了100万后,会出现性能的大幅度下降吗?答案是肯定的,但是,性能下降>的比率不一而同,要看系统的架构.应用程序.还有>包括索引.服务器硬件等多种因素而定.当有网友问我这个问题的时候,我最常见的回答>就是:分表,可以根据id区间或者时间先后顺序等多种规则来分表.分表很容易,然而由此所带来的应用程序甚至是架构方面的改动工作却不>容小觑,还包括将来的扩展性等. 在以前,一种解决方案就是使用 MERGE 类型,这是一个非常方便的做饭.架构和程序基本上不

  • 使用MySQL的LAST_INSERT_ID来确定各分表的唯一ID值

    分表除了表名的索引不同之外,表结构都是一样的,如果各表的'ID'字段仍采用'AUTO_INCREMENT'的方式的话,ID就不能唯确定一条记录了. 这时就需要一种处于各个分表之外的机制来生成ID,我们一般采用一张单独的数据表(不妨假设表名为'ticket_mutex')来保存这个ID,无论哪个分表有数据增加时,都是先到ticket_mutex表把ID值加1,然后取得ID值. 这个取ID的操作看似很复杂,所幸的是,MySQL提供了LAST_INSERT_ID机制,让我们能一步完成. 1.新建数据表

  • MySQL的表分区详解

    一.什么是表分区通俗地讲表分区是将一大表,根据条件分割成若干个小表.mysql5.1开始支持数据表分区了.如:某用户表的记录超过了600万条,那么就可以根据入库日期将表分区,也可以根据所在地将表分区.当然也可根据其他的条件分区. 二.为什么要对表进行分区为了改善大型表以及具有各种访问模式的表的可伸缩性,可管理性和提高数据库效率.分区的一些优点包括:      1).与单个磁盘或文件系统分区相比,可以存储更多的数据.      2).对于那些已经失去保存意义的数据,通常可以通过删除与那些数据有关的

  • MYSQL性能优化分享(分库分表)

    1.分库分表 很明显,一个主表(也就是很重要的表,例如用户表)无限制的增长势必严重影响性能,分库与分表是一个很不错的解决途径,也就是性能优化途径,现在的案例是我们有一个1000多万条记录的用户表members,查询起来非常之慢,同事的做法是将其散列到100个表中,分别从members0到members99,然后根据mid分发记录到这些表中,牛逼的代码大概是这样子: 复制代码 代码如下: <?php for($i=0;$i< 100; $i++ ){ //echo "CREATE TA

  • 创建mysql表分区的方法

    表分区是最近才知道的哦 ,以前自己做都是分表来实现上亿级别的数据了,下面我来给大家介绍一下mysql表分区创建与使用吧,希望对各位同学会有所帮助.表分区的测试使用,主要内容来自于其他博客文章以及mysql5.1的参考手册mysql测试版本:mysql5.5.28mysql物理存储文件(有mysql配置的datadir决定存储路径)格式简介数据库engine为MYISAM frm表结构文件,myd表数据文件,myi表索引文件.INNODB engine对应的表物理存储文件innodb的数据库的物理

  • MySQL分表实现上百万上千万记录分布存储的批量查询设计模式详解

    我们知道可以将一个海量记录的 MySQL 大表根据主键.时间字段,条件字段等分成若干个表甚至保存在若干服务器中. 唯一的问题就是跨服务器批量查询麻烦,只能通过应用程序来解决.谈谈在Java中的解决思路.其他语言原理类似.这里说的分表不是 MySQL 5.1 的 partition,而是人为把一个表分开存在若干表或不同的服务器.1. 应用程序级别实现见示意图 electThreadManager 分表数据查询管理器它为分表的每个database or server 建立一个 thread pool

  • MySQL动态创建表,数据分表的存储过程

    复制代码 代码如下: BEGIN DECLARE `@i` int(11); DECLARE `@siteCount` int(11); DECLARE `@sqlstr` VARCHAR(2560); DECLARE `@sqlinsert` VARCHAR(2560); //以上声明变量 SELECT COUNT(0) into `@siteCount` FROM tbl_base_site; //计算表tbl_base_site的记录总条数 set `@i`=1; WHILE (`@i`-

  • 什么是分表和分区 MySql数据库分区和分表方法

    1.为什么要分表和分区 日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表.这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕.分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率. 2.什么是分表和分区 2.1 分表 分表是将一个大表按照一定的规则分解成多张具有独立存储空间的实体表,我们可以称为子表,每个表都对应三个文件,MYD数据文件,.MYI索引文件,.frm表结构

  • mysql使用教程之分区表的使用方法(删除分区表)

    MySQL使用分区表的好处: 1,可以把一些归类的数据放在一个分区中,可以减少服务器检查数据的数量加快查询.2,方便维护,通过删除分区来删除老的数据.3,分区数据可以被分布到不同的物理位置,可以做分布式有效利用多个硬盘驱动器. MySQL可以建立四种分区类型的分区: RANGE 分区:基于属于一个给定连续区间的列值,把多行分配给分区. LIST 分区:类似于按RANGE分区,区别在于LIST分区是基于列值匹配一个离散值集合中的某个值来进行选择.  www.jb51.net HASH分区:基于用户

随机推荐