python tensorflow基于cnn实现手写数字识别

一份基于cnn的手写数字自识别的代码,供大家参考,具体内容如下

# -*- coding: utf-8 -*-

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 加载数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

# 以交互式方式启动session
# 如果不使用交互式session,则在启动session前必须
# 构建整个计算图,才能启动该计算图
sess = tf.InteractiveSession()

"""构建计算图"""
# 通过占位符来为输入图像和目标输出类别创建节点
# shape参数是可选的,有了它tensorflow可以自动捕获维度不一致导致的错误
x = tf.placeholder("float", shape=[None, 784]) # 原始输入
y_ = tf.placeholder("float", shape=[None, 10]) # 目标值

# 为了不在建立模型的时候反复做初始化操作,
# 我们定义两个函数用于初始化
def weight_variable(shape):
  # 截尾正态分布,stddev是正态分布的标准偏差
  initial = tf.truncated_normal(shape=shape, stddev=0.1)
  return tf.Variable(initial)
def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

# 卷积核池化,步长为1,0边距
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
             strides=[1, 2, 2, 1], padding='SAME')

"""第一层卷积"""
# 由一个卷积和一个最大池化组成。滤波器5x5中算出32个特征,是因为使用32个滤波器进行卷积
# 卷积的权重张量形状是[5, 5, 1, 32],1是输入通道的个数,32是输出通道个数
W_conv1 = weight_variable([5, 5, 1, 32])
# 每一个输出通道都有一个偏置量
b_conv1 = bias_variable([32])

# 位了使用卷积,必须将输入转换成4维向量,2、3维表示图片的宽、高
# 最后一维表示图片的颜色通道(因为是灰度图像所以通道数维1,RGB图像通道数为3)
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 第一层的卷积结果,使用Relu作为激活函数
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1))
# 第一层卷积后的池化结果
h_pool1 = max_pool_2x2(h_conv1)

"""第二层卷积"""
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

"""全连接层"""
# 图片尺寸减小到7*7,加入一个有1024个神经元的全连接层
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# 将最后的池化层输出张量reshape成一维向量
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
# 全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

"""使用Dropout减少过拟合"""
# 使用placeholder占位符来表示神经元的输出在dropout中保持不变的概率
# 在训练的过程中启用dropout,在测试过程中关闭dropout
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

"""输出层"""
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# 模型预测输出
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 交叉熵损失
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))

# 模型训练,使用AdamOptimizer来做梯度最速下降
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 正确预测,得到True或False的List
correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y_conv, 1))
# 将布尔值转化成浮点数,取平均值作为精确度
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

# 在session中先初始化变量才能在session中调用
sess.run(tf.global_variables_initializer())

# 迭代优化模型
for i in range(2000):
  # 每次取50个样本进行训练
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
      x: batch[0], y_: batch[1], keep_prob: 1.0}) # 模型中间不使用dropout
    print("step %d, training accuracy %g" % (i, train_accuracy))
  train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob: 0.5})
print("test accuracy %g" % accuracy.eval(feed_dict={
      x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

做了2000次迭代,在测试集上的识别精度能够到0.9772……

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • 基于Python实现对PDF文件的OCR识别

    最近在做一个项目的时候,需要将PDF文件作为输入,从中输出文本,然后将文本存入数据库中.为此,我找寻了很久的解决方案,最终才确定使用tesseract.所以不要浪费时间了,我们开始吧. 1.安装tesseract 在不同的系统中安装tesseract非常容易.为了简便,我们以Ubuntu为例. 在Ubuntu中你仅仅需要运行以下命令: 这将会安装支持3种不同语言的tesseract. 2.安装PyOCR 现在我们还需要安装tesseract的Python接口.幸运的是,有许多出色的Python接

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • Python中利用Scipy包的SIFT方法进行图片识别的实例教程

    scipy scipy包包含致力于科学计算中常见问题的各个工具箱.它的不同子模块相应于不同的应用.像插值,积分,优化,图像处理,,特殊函数等等. scipy可以与其它标准科学计算程序库进行比较,比如GSL(GNU C或C++科学计算库),或者Matlab工具箱.scipy是Python中科学计算程序的核心包;它用于有效地计算numpy矩阵,来让numpy和scipy协同工作. 在实现一个程序之前,值得检查下所需的数据处理方式是否已经在scipy中存在了.作为非专业程序员,科学家总是喜欢重新发明造

  • python验证码识别的实例详解

    其实关于验证码识别涉及很多方面的内容,入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足,对这感兴趣的朋友们下面跟着小编一起来学习学习吧. 依赖 sudo apt-get install python-imaging sudo apt-get install tesseract-ocr pip install pytesseract 利用google ocr来识别验证码 from PIL import Image import pytesseract image = Image

  • kNN算法python实现和简单数字识别的方法

    本文实例讲述了kNN算法python实现和简单数字识别的方法.分享给大家供大家参考.具体如下: kNN算法算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数: tile() 如tile(A,n)就是将A重复n次

  • Python验证码识别处理实例

    一.准备工作与代码实例 (1)安装PIL:下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packages中去, (2)pytesser:下载解压后直接放C:\Python27\Lib\site-packages(根据你安装的Python路径而不同),同时,新建一个pytheeer.pth,内容就写pytesser,注意这里的内容一定要和pytesser这个文件夹同名,意思就是pytesser文件夹,pytesser.pth,及内容都要一样! (3)Te

  • python下调用pytesseract识别某网站验证码的实现方法

    一.pytesseract介绍 1.pytesseract说明 pytesseract最新版本0.1.6,网址:https://pypi.python.org/pypi/pytesseract Python-tesseract is a wrapper for google's Tesseract-OCR ( http://code.google.com/p/tesseract-ocr/ ). It is also useful as a stand-alone invocation scrip

  • 详解Python验证码识别

    以前写过一个刷校内网的人气的工具,Java的(以后再也不行Java程序了),里面用到了验证码识别,那段代码不是我自己写的:-) 校内的验证是完全单色没有任何干挠的验证码,识别起来比较容易,不过从那段代码中可以看到基本的验证码识别方式.这几天在写一个程序的时候需要识别验证码,因为程序是Python写的自然打算用Python进行验证码的识别. 以前没用Python处理过图像,不太了解PIL(Python Image Library)的用法,这几天看了看PIL,发现它太强大了,简直和ImageMagi

  • python实现识别相似图片小结

    文章简介 在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 如有错误,请多包涵和多多指教. 参考的文章和图片来源会在底部一一列出. 以及本篇文章所用的代码都会在底下给出github地址. 安装相关库 python用作图像处理的相关库主要有openCV(C++编写,提供了python语言的接口),PIL,

随机推荐