Java基础之二叉搜索树的基本操作

一、二叉搜索树插入元素

/**
 * user:ypc;
 * date:2021-05-18;
 * time: 15:09;
 */
     class Node {
        int val;
        Node left;
        Node right;

        Node(int val) {
            this.val = val;
        }
    }
    public void insert(int key) {
        Node node = new Node(key);
        if (this.root == null) {
            root = node;
        }
        Node cur = root;
        Node parent = null;
        while (cur != null) {
            if (cur.val == key) {
                //System.out.println("元素已经存在");
                return;
            } else if (cur.val > key) {
                parent = cur;
                cur = cur.left;
            } else {
                parent = cur;
                cur = cur.right;
            }
        }
        if (key > parent.val) {
            parent.right = node;
        } else {
            parent.left = node;
        }

    }

二、搜索指定节点

 public boolean search(int key) {
        Node cur = root;
        while (cur != null) {
            if (cur.val == key) {
                return true;
            } else if (cur.val > key) {
                cur = cur.left;
            } else {
                cur = cur.right;
            }
        }

        return false;
    }

三、删除节点方式一

 public void removenode1(Node parent, Node cur) {
        if (cur.left == null) {
            if (cur == root) {
                root = cur.right;
            } else if (cur == parent.right) {
                parent.left = cur.right;
            } else {
                parent.right = cur.right;
            }
        } else if (cur.right == null) {
            if (cur == root) {
                root.left = cur;
            } else if (cur == parent.right) {
                parent.right = cur.left;
            } else {
                parent.left = cur.left;
            }
        } else {
            Node tp = cur;
            Node t = cur.right;
            while (t.left != null) {
                tp = t;
                t = t.left;
            }
            if (tp.left == t) {
                cur.val = t.val;
                tp.left = t.right;
            }
            if (tp.right == t) {
                cur.val = t.val;
                tp.right = t.right;
            }
        }

    }

    public void remove(int key) {
        Node cur = root;
        Node parent = null;
        while (cur != null) {
            if (cur.val == key) {
                removenode1(parent, cur);
              //removenode2(parent, cur);
                return;
            } else if (key > cur.val) {
                parent = cur;
                cur = cur.right;
            } else {
                parent = cur;
                cur = cur.left;
            }
        }
    }

四、删除节点方式二

 public void removenode2(Node parent, Node cur) {

        if (cur.left == null) {
            if (cur == root) {
                root = cur.right;
            } else if (cur == parent.right) {
                parent.left = cur.right;
            } else {
                parent.right = cur.right;
            }
        } else if (cur.right == null) {
            if (cur == root) {
                root.left = cur;
            } else if (cur == parent.right) {
                parent.right = cur.left;
            } else {
                parent.left = cur.left;
            }
        } else {
            Node tp = cur;
            Node t = cur.left;
            while (t.right != null) {
                tp = t;
                t = t.right;
            }
            if (tp.right == t) {
                cur.val = t.val;
                tp.right = t.left;
            }
            if (tp.left == t) {
                cur.val = t.val;
                tp.left = t.left;
            }
        }

    }

五、运行结果

 /**
 * user:ypc;
 * date:2021-05-18;
 * time: 15:09;
 */
class TestBinarySearchTree {
    public static void main(String[] args) {
        int a[] = {5, 3, 4, 1, 7, 8, 2, 6, 0, 9};
        BinarySearchTree binarySearchTree = new BinarySearchTree();
        for (int i = 0; i < a.length; i++) {
            binarySearchTree.insert(a[i]);
        }
        binarySearchTree.inOrderTree(binarySearchTree.root);
        System.out.println();
        binarySearchTree.preOrderTree(binarySearchTree.root);
        binarySearchTree.remove(7);
        System.out.println();
        System.out.println("方法一删除后");
        binarySearchTree.inOrderTree(binarySearchTree.root);
        System.out.println();
        binarySearchTree.preOrderTree(binarySearchTree.root);
    }
}


到此这篇关于Java基础之二叉搜索树的基本操作的文章就介绍到这了,更多相关二叉搜索树的基本操作内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java二叉搜索树基础原理与实现方法详解

    本文实例讲述了Java二叉搜索树基础原理与实现方法.分享给大家供大家参考,具体如下: 前言:本文通过先通过了解一些二叉树基础知识,然后在转向学习二分搜索树. 1 树 1.1 树的定义 树(Tree)是n(n>=0)个节点的有限集.n=0时称为空树.在任意一颗非空树中: (1)有且仅有一个特定的称为根(Root)的节点: (2)当n>1时,其余节点可分为m(m>0)个互不相交的有限集T1.T2........Tn,其中每一个集合本身又是一棵树,并且称为根的子树. 此外,树的定义还需要强调以

  • Java创建二叉搜索树,实现搜索,插入,删除的操作实例

    Java实现的二叉搜索树,并实现对该树的搜索,插入,删除操作(合并删除,复制删除) 首先我们要有一个编码的思路,大致如下: 1.查找:根据二叉搜索树的数据特点,我们可以根据节点的值得比较来实现查找,查找值大于当前节点时向右走,反之向左走! 2.插入:我们应该知道,插入的全部都是叶子节点,所以我们就需要找到要进行插入的叶子节点的位置,插入的思路与查找的思路一致. 3.删除: 1)合并删除:一般来说会遇到以下几种情况,被删节点有左子树没右子树,此时要让当前节点的父节点指向当前节点的左子树:当被删节点

  • Java 实现二叉搜索树的查找、插入、删除、遍历

    由于最近想要阅读下JDK1.8 中HashMap的具体实现,但是由于HashMap的实现中用到了红黑树,所以我觉得有必要先复习下红黑树的相关知识,所以写下这篇随笔备忘,有不对的地方请指出- 学习红黑树,我觉得有必要从二叉搜索树开始学起,本篇随笔就主要介绍Java实现二叉搜索树的查找.插入.删除.遍历等内容. 二叉搜索树需满足以下四个条件: 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 任意节点的左.右子

  • Java删除二叉搜索树最大元素和最小元素的方法详解

    本文实例讲述了Java删除二叉搜索树最大元素和最小元素的方法.分享给大家供大家参考,具体如下: 在前面一篇<Java二叉搜索树遍历操作>中完成了树的遍历,这一节中将对如何从二叉搜索树中删除最大元素和最小元素做介绍: 我们要想删除二分搜索树的最小值和最大值,就需要先找到二分搜索树的最小值和最大值,其实也还是很容易的,因为根据二叉搜索树的特点,它的左子树一定比当前节点要小,所以二叉搜索树的最小值一定是左子树一直往下走,一直走到底.同样在二叉搜索树中,右子树节点值,一定比当前节点要大,所以右子树一直

  • Java删除二叉搜索树的任意元素的方法详解

    本文实例讲述了Java删除二叉搜索树的任意元素的方法.分享给大家供大家参考,具体如下: 一.删除思路分析 在删除二叉搜索树的任意元素时,会有三种情况: 1.1 删除只有左孩子的节点 节点删除之后,将左孩子所在的二叉树取代其位置:连在原来节点父亲元素右节点的位置,比如在图中需要删除58这个节点. 删除58这个节点后,如下图所示: 1.2 删除只有右孩子的节点: 节点删除之后,将右孩子所在的二叉树取代其位置:连在原来节点的位置,比如在下图中需要删除58这个节点. 删除58这个节点后,如下图所示: 这

  • Java底层基于二叉搜索树实现集合和映射/集合Set功能详解

    本文实例讲述了Java底层基于二叉搜索树实现集合和映射功能.分享给大家供大家参考,具体如下: 前言:在第5章的系列学习中,已经实现了关于二叉搜索树的相关操作,详情查看第5章即可.在本节中着重学习使用底层是我们已经封装好的二叉搜索树相关操作来实现一个基本的集合(set)这种数据结构. 集合set的特性: 集合Set存储的元素是无序的.不可重复的.为了能达到这种特性就需要寻找可以作为支撑的底层数据结构. 这里选用之前自己实现的二叉搜索树,这是由于该二叉树是不能盛放重复元素的.因此我们可以使用二叉搜索

  • 利用java实现二叉搜索树

    二叉搜索树的定义 它是一颗二叉树 任一节点的左子树上的所有节点的值一定小于该节点的值 任一节点的右子树上的所有节点的值一定大于该节点的值 特点: 二叉搜索树的中序遍历结果是有序的(升序)! 实现一颗二叉搜索树 实现二叉搜索树,将实现插入,删除,查找三个方面 二叉搜索树的节点是不可以进行修改的,如果修改,则可能会导致搜索树的错误 二叉搜索树的定义类 二叉搜索树的节点类 -- class Node 二叉搜索树的属性:要找到一颗二叉搜索树只需要知道这颗树的根节点. public class BST {

  • Java二叉搜索树遍历操作详解【前序、中序、后序、层次、广度优先遍历】

    本文实例讲述了Java二叉搜索树遍历操作.分享给大家供大家参考,具体如下: 前言:在上一节Java二叉搜索树基础中,我们对树及其相关知识做了了解,对二叉搜索树做了基本的实现,下面我们继续完善我们的二叉搜索树. 对于二叉树,有深度遍历和广度遍历,深度遍历有前序.中序以及后序三种遍历方法,广度遍历即我们寻常所说的层次遍历,如图: 因为树的定义本身就是递归定义,所以对于前序.中序以及后序这三种遍历我们使用递归的方法实现,而对于广度优先遍历需要选择其他数据结构实现,本例中我们使用队列来实现广度优先遍历.

  • java实现 二叉搜索树功能

    一.概念 二叉搜索树也成二叉排序树,它有这么一个特点,某个节点,若其有两个子节点,则一定满足,左子节点值一定小于该节点值,右子节点值一定大于该节点值,对于非基本类型的比较,可以实现Comparator接口,在本文中为了方便,采用了int类型数据进行操作. 要想实现一颗二叉树,肯定得从它的增加说起,只有把树构建出来了,才能使用其他操作. 二.二叉搜索树构建 谈起二叉树的增加,肯定先得构建一个表示节点的类,该节点的类,有这么几个属性,节点的值,节点的父节点.左节点.右节点这四个属性,代码如下 sta

  • Java基础之二叉搜索树的基本操作

    一.二叉搜索树插入元素 /** * user:ypc: * date:2021-05-18; * time: 15:09; */ class Node { int val; Node left; Node right; Node(int val) { this.val = val; } } public void insert(int key) { Node node = new Node(key); if (this.root == null) { root = node; } Node cu

  • 在Java中实现二叉搜索树的全过程记录

    目录 二叉搜索树 有序符号表的 API 实现二叉搜索树 二叉搜索树类 查找 插入 最小/大的键 小于等于 key 的最大键/大于等于 key 的最小键 根据排名获得键 根据键获取排名 删除 总结 二叉搜索树 二叉搜索树结合了无序链表插入便捷和有序数组二分查找快速的特点,较为高效地实现了有序符号表.下图显示了二叉搜索树的结构特点(图片来自<算法第四版>): 可以看到每个父节点下都可以连着两个子节点,键写在节点上,其中左边的子节点的键小于父节点的键,右节点的键大于父节点的键.每个父节点及其后代节点

  • Java数据结构之二叉搜索树详解

    目录 前言 性质 实现 节点结构 初始化 插入节点 查找节点 删除节点 最后 前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不变,做完之后,我觉得这道题将二叉搜索树特性凸显的很好,首先需要查找指定节点,然后删除节点并且保持二叉搜索树性质不变,就想利用这个题目讲讲二叉搜索树. 二叉搜索树作为一个经典的数据结构,具有链表的快速插入与删除的特点,同时查询效率也很优秀,所以应用十分广泛,例如在文件系统和数据库系统一般会采用这种数

  • java基础二叉搜索树图文详解

    目录 概念 直接实践 准备工作:定义一个树节点的类,和二叉搜索树的类. 搜索二叉树的查找功能 搜索二叉树的插入操作 搜索二叉树删除节点的操作-难点 性能分析 总程序-模拟实现二叉搜索树 和java类集的关系 总结 概念 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:1.若它的左子树不为空,则左子树上所有节点的值都小于根结点的值.2.若它的右子树不为空,则右子树上所有节点的值都大于根结点的值.3.它的左右子树也分别为二叉搜索树 直接实践 准备工作:定义一个树节点的类,和二

随机推荐