python实现Simhash算法

1、simhash步骤

simhash包含分词、hash、加权、合并、降维五大步骤

simhash代码如下:

import jieba
import jieba.analyse
import numpy as np

class SimHash(object):
    def simHash(self, content):
        seg = jieba.cut(content)
        # jieba.analyse.set_stop_words('stopword.txt')
        # jieba基于TF-IDF提取关键词
        keyWords = jieba.analyse.extract_tags("|".join(seg), topK=10, withWeight=True)

        keyList = []
        for feature, weight in keyWords:
            # print('feature:' + feature)
            print('weight: {}'.format(weight))
            # weight = math.ceil(weight)
            weight = int(weight)
            binstr = self.string_hash(feature)
            print('feature: %s , string_hash %s' % (feature, binstr))
            temp = []
            for c in binstr:
                if (c == '1'):
                    temp.append(weight)
                else:
                    temp.append(-weight)
            keyList.append(temp)
        listSum = np.sum(np.array(keyList), axis=0)
        if (keyList == []):
            return '00'
        simhash = ''
        for i in listSum:
            if (i > 0):
                simhash = simhash + '1'
            else:
                simhash = simhash + '0'
        return simhash

    def string_hash(self, source):
        if source == "":
            return 0
        else:
            temp = source[0]
            temp1 = ord(temp)
            x = ord(source[0]) << 7
            m = 1000003
            mask = 2 ** 128 - 1
            for c in source:
                x = ((x * m) ^ ord(c)) & mask
            x ^= len(source)
            if x == -1:
                x = -2
            x = bin(x).replace('0b', '').zfill(64)[-64:]

            return str(x)

    def getDistance(self, hashstr1, hashstr2):
        '''
            计算两个simhash的汉明距离
        '''
        length = 0
        for index, char in enumerate(hashstr1):
            if char == hashstr2[index]:
                continue
            else:
                length += 1

        return length

1.1分词

分词是将文本文档进行分割成不同的词组,比如词1为:今天星期四,词2为:今天星期五

得出分词结果为【今天,星期四】【今天,星期五】

1.2hash

hash是将分词结果取hash值
星期四hash为:0010001100100000101001101010000000101111011010010001100011011110
今天hash为:0010001111010100010011110001110010100011110111111011001011110101
星期五hash为:0010001100100000101001101010000000101111011010010000000010010001

1.3加权

1.4合并

1.5降维

降维是将合并的结果进行降维,如果值大于0,则置为1小于0 则置为0,因此得到的结果为:

2、simhash比对

一般simhash采用海明距离来进行计算相似度,海明距离计算如下:

对于A,B两个n维二进制数

二者的海明距离为:

其中:

举例:

1000与1111的海明距离为3

到此这篇关于python实现Simhash算法的文章就介绍到这了,更多相关python实现Simhash算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python实现Simhash算法

    1.simhash步骤 simhash包含分词.hash.加权.合并.降维五大步骤 simhash代码如下: import jieba import jieba.analyse import numpy as np class SimHash(object):     def simHash(self, content):         seg = jieba.cut(content)         # jieba.analyse.set_stop_words('stopword.txt')

  • 论文查重python文本相似性计算simhash源码

    场景: 1.计算SimHash值,及Hamming距离.2.SimHash适用于较长文本(大于三五百字)的相似性比较,文本越短误判率越高. Python实现: 代码如下 # -*- encoding:utf-8 -*- import math import jieba import jieba.analyse class SimHash(object): def getBinStr(self, source): if source == "": return 0 else: x = o

  • python实现simhash算法实例

    Simhash的算法简单的来说就是,从海量文本中快速搜索和已知simhash相差小于k位的simhash集合,这里每个文本都可以用一个simhash值来代表,一个simhash有64bit,相似的文本,64bit也相似,论文中k的经验值为3.该方法的缺点如优点一样明显,主要有两点,对于短文本,k值很敏感:另一个是由于算法是以空间换时间,系统内存吃不消. 复制代码 代码如下: #!/usr/bin/python# coding=utf-8class simhash: #构造函数    def __

  • 如何利用python实现Simhash算法

    目录 1. 为什么需要Simhash? 2. 文章关键词特征提取算法TD-IDF 3. Simhash原理 4. Simhash的不足 5. Simhash算法实现 1. 为什么需要Simhash? 传统相似度算法:文本相似度的计算,一般使用向量空间模型(VSM),先对文本分词,提取特征,根据特征建立文本向量,把文本之间相似度的计算转化为特征向量距离的计算,如欧式距离.余弦夹角等. 缺点:大数据情况下复杂度会很高. Simhash应用场景:计算大规模文本相似度,实现海量文本信息去重. Simha

  • 基于Python实现Hash算法

    目录 1 前言 2 一般hash算法 2.1 算法逻辑 2.2 代码实现 2.3 总结 3 一致性hash算法 3.1 算法逻辑 3.2 代码实现 3.3 总结 1 前言 Simhash的算法简单的来说就是,从海量文本中快速搜索和已知simhash相差小于k位的simhash集合,这里每个文本都可以用一个simhash值来代表,一个simhash有64bit,相似的文本,64bit也相似,论文中k的经验值为3.该方法的缺点如优点一样明显,主要有两点,对于短文本,k值很敏感:另一个是由于算法是以空

  • python快速查找算法应用实例

    本文实例讲述了Python快速查找算法的应用,分享给大家供大家参考. 具体实现方法如下: import random def partition(list_object,start,end): random_choice = start #random.choice(range(start,end+1)) #把这里的start改成random()效率会更高些 x = list_object[random_choice] i = start j = end while True: while li

  • Python数据结构与算法之图结构(Graph)实例分析

    本文实例讲述了Python数据结构与算法之图结构(Graph).分享给大家供大家参考,具体如下: 图结构(Graph)--算法学中最强大的框架之一.树结构只是图的一种特殊情况. 如果我们可将自己的工作诠释成一个图问题的话,那么该问题至少已经接近解决方案了.而我们我们的问题实例可以用树结构(tree)来诠释,那么我们基本上已经拥有了一个真正有效的解决方案了. 邻接表及加权邻接字典 对于图结构的实现来说,最直观的方式之一就是使用邻接列表.基本上就是针对每个节点设置一个邻接列表.下面我们来实现一个最简

  • Python基于分水岭算法解决走迷宫游戏示例

    本文实例讲述了Python基于分水岭算法解决走迷宫游戏.分享给大家供大家参考,具体如下: #Solving maze with morphological transformation """ usage:Solving maze with morphological transformation needed module:cv2/numpy/sys ref: 1.http://www.mazegenerator.net/ 2.http://blog.leanote.com

  • python二分查找算法的递归实现方法

    本文实例讲述了python二分查找算法的递归实现方法.分享给大家供大家参考,具体如下: 这里先提供一段二分查找的代码: def binarySearch(alist, item): first = 0 last = len(alist)-1 found = False while first<=last and not found: midpoint = (first + last)//2 if alist[midpoint] == item: found = True else: if ite

  • python通过BF算法实现关键词匹配的方法

    本文实例讲述了python通过BF算法实现关键词匹配的方法.分享给大家供大家参考.具体实现方法如下: 复制代码 代码如下: #!/usr/bin/python # -*- coding: UTF-8 # filename BF import time """ t="this is a big apple,this is a big apple,this is a big apple,this is a big apple." p="apple&q

  • python选择排序算法实例总结

    本文实例总结了python选择排序算法.分享给大家供大家参考.具体如下: 代码1: def ssort(V): #V is the list to be sorted j = 0 #j is the "current" ordered position, starting with the first one in the list while j != len(V): #this is the replacing that ends when it reaches the end o

随机推荐