Python matplotlib实现散点图的绘制

目录
  • 一、整理数据
  • 二、修改点的样式
  • 三、呈现半透明的状态
  • 四、点呈现多彩的颜色
  • 五、让点的大小不一
  • 六、侧边呈现颜色卡
  • 七、改变集中性

一、整理数据

import pandas as pd
cnbodf=pd.read_excel('cnboo1.xlsx')
cnbodfsort=cnbodf.sort_values(by=['BO'],ascending=False)
def mkpoints(x,y):
    return len(str(x))*(y/25)-3

cnbodfsort['points']=cnbodfsort.apply(lambda x:mkpoints(x.BO,x.PERSONS),axis=1)
cnbodfgb=cnbodfsort.groupby("TYPE").mean(["bo","prices","persons","points"])
cnbodfsort['type1']=cnbodfsort['TYPE'].apply(lambda x:x.split("/")[0])
cnbodfgb=cnbodfsort.groupby(["type1"])["ID","BO","PRICE","PERSONS","points"].mean()
cnbodfgbsort=cnbodfgb.sort_values("BO",ascending=False)
cnbodfsort.sort_values(by='PERSONS') # 根据电影人数进行排序

from matplotlib import pyplot as plt
plt.style.use('classic') # 画板主题风格
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况")  # 标题

plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE) # 散点图

plt.grid() # 网格线
plt.show()

二、修改点的样式

from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 

plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c='red',edgecolor='pink',s=100,linewidth=4)

plt.grid()
plt.show()

三、呈现半透明的状态

alpha=0.3
from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 

plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c='red',edgecolor='black',s=100,linewidth=4,alpha=0.5)

plt.grid()
plt.show()

注意到当数据较为集中的时候,点的颜色较深,如果数据分布较稀疏的时候,点更透明。

四、点呈现多彩的颜色

由于我一共有五十组数据,也就是有50个点,因此当构建colors的时候必须有五十个。

from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 

colors=[1,2,3,4,5,6,7,8,9,10]*5
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c=colors,edgecolor='black',s=100,linewidth=4,alpha=0.5)

plt.grid()
plt.show()

五、让点的大小不一

from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 

colors=[1,2,3,4,5,6,7,8,9,10]*5
sizes=cnbodfsort.points*10
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c=colors,edgecolor='black',s=sizes,linewidth=4,alpha=0.5)

plt.grid()
plt.show()

也可以通过使用numpy数组来进行实现:

sizes=list(np.random.randint(100,500,size=(50,)))

如果让点变回同色系,则使:

cmap='summer'
import numpy as np
from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 

colors=[1,2,3,4,5,6,7,8,9,10]*5
sizes=list(np.random.randint(100,500,size=(50,)))
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,cmap='summer',edgecolor='black',s=sizes,linewidth=4,alpha=0.5)
cbar=plt.colorbar()
cbar.set_label("票房")
plt.xscale('log')
plt.xscale('log')

plt.grid()
plt.show()

import numpy as np
from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 

colors=[1,2,3,4,5,6,7,8,9,10]*5
sizes=list(np.random.randint(100,500,size=(50,)))
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,cmap='winter',c=cnbodfsort.PERSONS,edgecolor='black',s=sizes,linewidth=4,alpha=0.5)
cbar=plt.colorbar()
cbar.set_label("票房")
plt.xscale('log')
plt.xscale('log')

plt.grid()
plt.show()

六、侧边呈现颜色卡

cbar=plt.colorbar()
import numpy as np
from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 

colors=[1,2,3,4,5,6,7,8,9,10]*5
sizes=list(np.random.randint(100,500,size=(50,)))
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c=colors,edgecolor='black',s=sizes,linewidth=4,alpha=0.5)
cbar=plt.colorbar()
cbar.set_label("票房")

plt.grid()
plt.show()

七、改变集中性

plt.xscale('log')
plt.xscale('log')
import numpy as np
from matplotlib import pyplot as plt
plt.style.use('classic')
plt.figure(figsize=(9,6))
plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 使用微软雅黑的字体
plt.title("中国票房分布情况") 

colors=[1,2,3,4,5,6,7,8,9,10]*5
sizes=list(np.random.randint(100,500,size=(50,)))
plt.scatter(cnbodfsort.PERSONS,cnbodfsort.PRICE,c=colors,edgecolor='black',s=sizes,linewidth=4,alpha=0.5)
cbar=plt.colorbar()
cbar.set_label("票房")
plt.xscale('log')
plt.xscale('log')

plt.grid()
plt.show()

可以看到横坐标轴发生了变化。

以上就是Python matplotlib实现散点图的绘制的详细内容,更多关于Python matplotlib散点图的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 其实在数据统计图表中,有一种图表是散列点分布在坐标中,反应数据随着自变量变化的趋势. 本期,我们将详细

  • python3使用matplotlib绘制散点图

    本文实例为大家分享了python3使用matplotlib绘制散点图,并标注图例,轴,供大家参考,具体内容如下 代码 from matplotlib import pyplot as plt from matplotlib import font_manager # 使得中文可以显示出来 my_font = font_manager.FontProperties(fname="/usr/share/fonts/truetype/arphic/ukai.ttc") y_3 = [11,

  • Python利用matplotlib绘制散点图的新手教程

    前言 上篇文章介绍了使用matplotlib绘制折线图,参考:https://www.jb51.net/article/198991.htm,本篇文章继续介绍使用matplotlib绘制散点图. 一.matplotlib绘制散点图 # coding=utf-8 import matplotlib.pyplot as plt years = [2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019] turnovers =

  • python学习之matplotlib绘制散点图实例

    要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

  • python matplotlib库绘制散点图例题解析

    假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温随时间(天)变化的某种规律? a = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23] b = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,

  • Python matplotlib绘制散点图的实例代码

    前言 前面说到的主要是matplotlib对于图像的基础操作,然后从这篇开始,主要说一下点图,分析点图在实际问题的数据处理中应用非常广泛,比如说逻辑回归是利用现有的数据点通过拟合得到一定的函数关系,甚至生活中,物体运动的轨迹,也可以看做是连续的点绘制而成,还有图像,也是很多个像素点堆砌而成的,在图像处理中经常会针对单个像素点进行处理. 现在的深度学习或者机器学习,模型都是固定的,大多 不需要怎么改动,而能提升训练效果的,最重要的就是能更好的处理数据,而很多数据本身就是点集,利用matplotli

  • Python matplotlib实现散点图的绘制

    目录 一.整理数据 二.修改点的样式 三.呈现半透明的状态 四.点呈现多彩的颜色 五.让点的大小不一 六.侧边呈现颜色卡 七.改变集中性 一.整理数据 import pandas as pd cnbodf=pd.read_excel('cnboo1.xlsx') cnbodfsort=cnbodf.sort_values(by=['BO'],ascending=False) def mkpoints(x,y): return len(str(x))*(y/25)-3 cnbodfsort['po

  • Python matplotlib数据可视化图绘制

    目录 前言 1.折线图 2.直方图 3.箱线图 4.柱状图 5.饼图 6.散点图 前言 导入绘图库: import matplotlib.pyplot as plt import numpy as np import pandas as pd import os 读取数据(数据来源是一个EXCLE表格,这里演示的是如何将数据可视化出来) os.chdir(r'E:\jupyter\数据挖掘\数据与代码') df = pd.read_csv('air_data.csv',na_values= '-

  • 不同版本中Python matplotlib.pyplot.draw()界面绘制异常问题的解决

    前言 本文主要给大家介绍了关于不同版本中Python matplotlib.pyplot.draw()界面绘制异常的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 在 Ubuntu系统上进行如下配置: $ sudo apt-get update $ sudo apt-get upgrade $ sudo apt-get install python-dev $ sudo apt-get install python-pip $ sudo pip install --u

  • Python matplotlib画图实例之绘制拥有彩条的图表

    生产定制一个彩条标签. 首先导入: import matplotlib.pyplot as plt import numpy as np from matplotlib import cm from numpy.random import randn 制作拥有垂直(默认)彩条的图表: fig, ax = plt.subplots() data = np.clip(randn(250, 250), -1, 1) cax = ax.imshow(data, interpolation='neares

  • python matplotlib模块基本图形绘制方法小结【直线,曲线,直方图,饼图等】

    本文实例讲述了python matplotlib模块基本图形绘制方法.分享给大家供大家参考,具体如下: matplotlib模块是python中一个强大的绘图模块 安装 pip  install matplotlib 首先我们来画一个简单的图来感受它的神奇 import numpy as np import matplotlib.pyplot as plt import matplotlib zhfont1=matplotlib.font_manager.FontProperties(fname

  • Python+matplotlib实现饼图的绘制

    目录 一.整理数据 二.创建饼图 三.爆炸效果 四.阴影效果 五.为饼图加上百分比 六.让饼图旋转不同的角度 七.为饼图添加边缘线 八.为饼图数据分组 一.整理数据 关于cnboo1.xlsx,我放在我的码云里,需要的朋友自行下载:cnboo1.xlsx films=['穿过寒冬拥抱你','反贪风暴5:最终章','李茂扮太子','误杀2','以年为单位的恋爱','黑客帝国:矩阵重启','雄狮少年','魔法满屋','汪汪队立大功大电影','爱情神话'] regions=['中国','英国','澳大

  • Python matplotlib实现多重图的绘制

    目录 Python中插入图片 绘制子图 绘制1*2的子图 绘制2*2的子图 绘制不规则子图 绘制图中代码 from matplotlib import pyplot as plt plt.style.use('fivethirtyeight') fig=plt.figure() ax=fig.add_subplot(1,1,1) plt.text(0.5,0.5,'Figure',ha='center',va='center',size=20,alpha=0.5) # 注:这里的0.5代表x,y

  • 基于Python+Matplotlib实现直方图的绘制

    目录 1.关于直方图 2.plt.hist() 3. 绘制一幅简单的 频数 分布直方图 4. 绘制一幅 频率 分布直方图 5. 累积分布直方图(水平方向) 1.关于直方图 直方图 也称 质量分布图,虽然看起来像柱状图, 实际上区别又很大.直方图通常横轴表示数据类型,纵轴表示各数据类型的分布情况. 直方图又可以分为频数分布直方图和频率分布直方图.其绘制方法并无多少差异,只是描述的事件有所不同.频数分布直方图描述的是某事件的数量,而频率分布则描述的是其发生的频率. 而关于频率分布直方图,又可以理解为

  • Python+Pyecharts实现散点图的绘制

    目录 第1关:Scatter:散点图(一) 编程要求 代码 测试说明 第2关:Scatter:散点图(二) 编程要求 代码 测试说明 第3关:Scatter:散点图(三) 编程要求 代码 测试说明 第1关:Scatter:散点图(一) 编程要求 根据以上介绍,在右侧编辑器补充代码,绘制给定数据的散点图,要求: 画布大小初始化为宽 1600 像素,高 1000 像素 X 轴数据设置为 x_data 添加 Y 轴数据.系列名称设置为空,数据使用 y_data,标记的大小设置为20,不显示标签 X 轴

  • python matplotlib画图库学习绘制常用的图

    本文实例为大家分享了python matplotlib绘制常用图的具体代码,供大家参考,具体内容如下 github地址 导入相关类 import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=Fals

随机推荐