Python中Numpy模块使用详解

目录
  • NumPy
    • ndarray对象
  • ​ ​Numpy数据类型​​
    • Numpy数组属性

NumPy

NumPy(Numerical Python) 是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Nupmy可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。

NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:

  • 一个强大的 N 维数组对象 ndarray
  • 广播功能函数
  • 整合 C/C++/Fortran 代码的工具
  • 线性代数、傅里叶变换、随机数生成等功能

ndarray对象

NumPy 最重要的一个对象是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,可以使用基于 0 的索引访问集合中的项目。

ndarray 对象是用于存放同类型元素的多维数组。ndarray中的每个元素在内存中使用相同大小的块。 ndarray中的每个元素是数据类型对象的对象(称为 dtype)

numpy.array( object ,  dtype = None , ndmin = 0 ,copy = True , order = None ,  subok = False )

一般只有 object 、dtype和 ndmin 参数常用,其他参数不常用

import numpy
a=numpy.array([1,2,3]) #一维
b=numpy.array([[1,2,3],[4,5,6]]) #二维
c=numpy.array([1,2,3],dtype=complex) #元素类型为复数
d=numpy.array([1,2,3],ndmin=2) #二维
print(a,type(a))
print(b,type(b))
print(c,type(c))
print(d,type(d))
####################################
[1 2 3] <class 'numpy.ndarray'>
[[1 2 3]
[4 5 6]] <class 'numpy.ndarray'>
[1.+0.j 2.+0.j 3.+0.j] <class 'numpy.ndarray'
[[1 2 3]] <class 'numpy.ndarray'>

​ ​Numpy数据类型​​

Numpy数组属性

NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。

在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。

 ndarray 对象属性有:

常见的属性有下面几种 :

ndarray.shape :  这一数组属性返回一个包含数组纬度的元组,它也可以用于调整数组大小

import numpy as np
a=np.array([[1,2,3],[4,5,6]])
print(a.shape) #打印shape属性
a.shape=(3,2) #修改shape属性
print(a)
#######################################
(2, 3)
[[1 2]
[3 4]
[5 6]]

 ndarray.ndim: 这一数组属性返回数组的维数

import numpy as np
a=np.arange(24) #np.arange返回0-23的列表类型的数据
print(a.ndim)
b=a.reshape(2,3,4)
print(b)
print(b.ndim)
############################
1
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]

[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
3

ndarray.itemsize

import numpy as np
a=np.array([1,2,3]) #默认是四个字节
print(a.itemsize)
#########################################
4

到此这篇关于Python中Numpy模块使用详解的文章就介绍到这了,更多相关Python Numpy模块内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python使用Numpy模块读取文件并绘制图片

    代码如下 import pandas as pd import matplotlib.pyplot as plt import numpy as np data = np.loadtxt('distance.txt',dtype = np.int) print(data) x = data[:,0] # 设置第1列数据为x轴数据. y = np.log(data[:,1]) # 设置第2列为y轴数据,计算自然对数后赋值给y, 注意如果取以10为底的对数,则需要使用log10方法. print(x

  • Python使用numpy模块实现矩阵和列表的连接操作方法

    Numpy模块被广泛用于科学和数值计算,自然有它的强大之处,之前对于特征处理中需要进行数据列表或者矩阵拼接的时候都是自己写的函数来完成的,今天发现一个好玩的函数,不仅好玩,关键性能强大,那就是Numpy模块自带的矩阵.列表连接函数,实践一下. #!usr/bin/env python #encoding:utf-8 from __future__ import division ''' __Author__:沂水寒城 使用numpy模块实现矩阵的连接操作 ''' import numpy as

  • Python使用numpy模块创建数组操作示例

    本文实例讲述了Python使用numpy模块创建数组操作.分享给大家供大家参考,具体如下: 创建数组 创建ndarray 创建数组最简单的方法就是使用array函数.它接收一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组. array函数创建数组 import numpy as np ndarray1 = np.array([1, 2, 3, 4]) ndarray2 = np.array(list('abcdefg')) ndarray3 = np.array([

  • Python3.5基础之NumPy模块的使用图文与实例详解

    本文实例讲述了Python3.5基础之NumPy模块的使用.分享给大家供大家参考,具体如下: 1.简介 2.多维数组--ndarray #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import numpy as np #1.创建ndarray #创建一维数组 n1 = np.array([1,2,3,4]) print(n1) #属性--ndim:维度;dtype:元素类型;shape:数组形状; # s

  • Python中Numpy模块使用详解

    目录 NumPy ndarray对象 ​ ​Numpy数据类型​​ Numpy数组属性 NumPy NumPy(Numerical Python) 是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Nupmy可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)).据说NumPy将Python相当于变成一种免费的更强大的MatLab系统.

  • Python中itertools模块用法详解

    本文实例讲述了Python中itertools模块用法,分享给大家供大家参考.具体分析如下: 一般来说,itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生成器和生成器表达式)的函数联合使用. chain(iter1, iter2, ..., iterN): 给出一组迭代器(iter1, iter2, ..., iterN),此函数创建一个新迭代器来将所有的迭代器链接起来,返回的迭代器从it

  • Python中标准模块importlib详解

    1 模块简介 Python提供了importlib包作为标准库的一部分.目的就是提供Python中import语句的实现(以及__import__函数).另外,importlib允许程序员创建他们自定义的对象,可用于引入过程(也称为importer). 什么是imp? 另外有一个叫做imp的模块,它提供给Python import语句机制的接口.这个模块在Python 3.4中被否决,目的就是为了只使用importlib. 这个模块有些复杂,因此我们在这篇博文中主要讨论以下几个主题: •动态引入

  • python中 logging的使用详解

    日志是用来记录程序在运行过程中发生的状况,在程序开发过程中添加日志模块能够帮助我们了解程序运行过程中发生了哪些事件,这些事件也有轻重之分. 根据事件的轻重可分为以下几个级别: DEBUG: 详细信息,通常仅在诊断问题时才受到关注.整数level=10 INFO: 确认程序按预期工作.整数level=20 WARNING:出现了异常,但是不影响正常工作.整数level=30 ERROR:由于某些原因,程序 不能执行某些功能.整数level=40 CRITICAL:严重的错误,导致程序不能运行.整数

  • python logging日志模块的详解

    python logging日志模块的详解 日志级别 日志一共分成5个等级,从低到高分别是:DEBUG INFO WARNING ERROR CRITICAL. DEBUG:详细的信息,通常只出现在诊断问题上 INFO:确认一切按预期运行 WARNING:一个迹象表明,一些意想不到的事情发生了,或表明一些问题在不久的将来(例如.磁盘空间低").这个软件还能按预期工作. ERROR:更严重的问题,软件没能执行一些功能 CRITICAL:一个严重的错误,这表明程序本身可能无法继续运行 这5个等级,也

  • python中time包实例详解

    在python中基础的时间运用,离不开time函数的支持.这些函数为了方便调用集中放在一个地方,叫做time包.有的人会仔细追寻time包的来源,会发现它和C语言有密不可分的关系.下面我们简单介绍time包的概念,然后就包中的一些函数进行列举,并附上对应的使用方法. 1.概念 time包基于C语言的库函数(library functions).Python的解释器通常是用C编写的,Python的一些函数也会直接调用C语言的库函数. 2.time包中的函数 time.clock()返回程序运行的整

  • Python之re模块案例详解

    一.正则表达式   re模块是python独有的匹配字符串的模块,该模块中提供的很多功能是基于正则表达式实现的,而正则表达式是对字符串进行模糊匹配,提取自己需要的字符串部分,他对所有的语言都通用.注意: re模块是python独有的 正则表达式所有编程语言都可以使用 re模块.正则表达式是对字符串进行操作 因为,re模块中的方法大都借助于正则表达式,故先学习正则表达式. (一)常用正则  1.字符组 在同一个位置可能出现的各种字符组成了一个字符组,在正则表达式中用[]表示 正则 待匹配字符 匹配

  • python中异常的传播详解

    目录 1.异常的传播 2.如何处理异常 1.异常的传播 当在函数中出现异常时,如果在函数中对异常进行了处理,则异常不会再继续传播.如果函数中没有对异常进行处理,则异常会继续向函数调用者传播.如果函数调用者处理了异常,则不再传播,如果还没有处理,则继续向他的调用者传播,直到传递到全局作用域(主模块)如果依然没有处理,则程序终止,并且显示异常信息到控制台.所以异常的传播我们也称之为抛出异常. 异常传播示例如下: def fn1(): print('Hello fn') print(10/0) def

  • Python之os模块案例详解

    OS模块 import os 1.返回操作系统类型 :posix 是linux操作系统,nt 是windows操作系统 print(os.name) print('Linux' if os.name == 'posix' else 'Windows') posix Linux 2.操作系统的详细信息 info = os.uname() print(info) print(info.sysname) print(info.nodename) posix.uname_result(sysname='

  • Python中re.findall()用法详解

    在python中,通过内嵌集成re模块,程序媛们可以直接调用来实现正则匹配.本文重点给大家介绍python中正则表达式 re.findall 用法 re.findall():函数返回包含所有匹配项的列表.返回string中所有与pattern相匹配的全部字串,返回形式为数组. 示例代码1:[打印所有的匹配项] import re s = "Long live the people's Republic of China" ret = re.findall('h', s) print(r

随机推荐