C语言 module_init函数与initcall案例详解

module_init这个函数对做驱动的人来说肯定很熟悉,这篇文章用来跟一下这个函数的实现。

在include/linux/init.h里面有module_init的定义,自然,因为一个module可以在内核启动时自动加载进内核,也可以由我们手动在需要时加载进内核,基于这种场景,内核使用了MODULE这个宏,见代码:

#ifndef MODULE

#ifndef __ASSEMBLY__

...

#define __define_initcall(level,fn,id) \
    static initcall_t __initcall_##fn##id __attribute_used__ \
    __attribute__((__section__(".initcall" level ".init"))) = fn

#define pure_initcall(fn)        __define_initcall("0",fn,0)

#define core_initcall(fn)        __define_initcall("1",fn,1)
#define core_initcall_sync(fn)        __define_initcall("1s",fn,1s)
#define postcore_initcall(fn)        __define_initcall("2",fn,2)
#define postcore_initcall_sync(fn)    __define_initcall("2s",fn,2s)
#define arch_initcall(fn)        __define_initcall("3",fn,3)
#define arch_initcall_sync(fn)        __define_initcall("3s",fn,3s)
#define subsys_initcall(fn)        __define_initcall("4",fn,4)
#define subsys_initcall_sync(fn)    __define_initcall("4s",fn,4s)
#define fs_initcall(fn)            __define_initcall("5",fn,5)
#define fs_initcall_sync(fn)        __define_initcall("5s",fn,5s)
#define rootfs_initcall(fn)        __define_initcall("rootfs",fn,rootfs)
#define device_initcall(fn)        __define_initcall("6",fn,6)
#define device_initcall_sync(fn)    __define_initcall("6s",fn,6s)
#define late_initcall(fn)        __define_initcall("7",fn,7)
#define late_initcall_sync(fn)        __define_initcall("7s",fn,7s)

#define __initcall(fn) device_initcall(fn)

#define module_init(x)    __initcall(x);

#else /* MODULE */

...

#define module_init(initfn)                    \
    static inline initcall_t __inittest(void)        \
    { return initfn; }                    \
    int init_module(void) __attribute__((alias(#initfn)));...

当我们使用make menuconfig来配置内核时,将某个module配置为m时,MODULE这个宏就被定义了,而当配置为y时,则没有定义,具体的实现在kernel的根Makefile(-DMODULE)里。

现在我们先看下第一种情况,即把module配置为m的情况,即else分支的代码。

先看下initcall_t的定义:

typedef int (*initcall_t)(void);

它是一个接收参数为void, 返回值为int类型的函数指针。这样就明白了,其实前两句话只是做了一个检测,当你传进来的函数指针的参数和返回值与initcall_t不一致时,就会有告警。
重点在第三句,是使用alias将initfn变名为init_module,我们知道,kernel 2.4版本之前都是用init_module来加载模块的。这样做应该是为了不用修改load module的那块代码吧。

当我们调用insmod将module加载进内核时,会去找init_module作为入口地址,即是我们的initfn, 这样module就被加载了。

取nvme.ko为例,我们可以通过objdump -t nvme.ko 查看该模块的符号表,发现init_module和nvme_init指向同一个偏移量。如下:

现在看第二种情况,即我们选择将模块编进内核,让它随内核启动而加载。

这种情况下module_init最终会调用__define_initcall宏,这个宏的作用就是将我们的初始化函数放在".initcall" level ".init"中。

在这里是.initcall6.init, 它的位置可以在Vmlinux.lds.h里面找到:

#define INITCALLS                            \
      *(.initcall0.init)                        \
      *(.initcall0s.init)                        \
      *(.initcall1.init)                        \
      *(.initcall1s.init)                        \
      *(.initcall2.init)                        \
      *(.initcall2s.init)                        \
      *(.initcall3.init)                        \
      *(.initcall3s.init)                        \
      *(.initcall4.init)                        \
      *(.initcall4s.init)                        \
      *(.initcall5.init)                        \
      *(.initcall5s.init)                        \
    *(.initcallrootfs.init)                        \
      *(.initcall6.init)                        \
      *(.initcall6s.init)                        \
      *(.initcall7.init)                        \
      *(.initcall7s.init)

而INITCALL可以在vmlinux.lds.S里面找到:

.init.text : AT(ADDR(.init.text) - LOAD_OFFSET) {
      __init_begin = .;
    _sinittext = .;
    *(.init.text)
    _einittext = .;
  }
  .init.data : AT(ADDR(.init.data) - LOAD_OFFSET) { *(.init.data) }
  . = ALIGN(16);
  .init.setup : AT(ADDR(.init.setup) - LOAD_OFFSET) {
      __setup_start = .;
    *(.init.setup)
      __setup_end = .;
   }
  .initcall.init : AT(ADDR(.initcall.init) - LOAD_OFFSET) {
      __initcall_start = .;
    INITCALLS
      __initcall_end = .;
  }
  .con_initcall.init : AT(ADDR(.con_initcall.init) - LOAD_OFFSET) {
      __con_initcall_start = .;
    *(.con_initcall.init)
      __con_initcall_end = .;
  }

上面贴出来的代码是系统启动时存放初始化数据的地方,执行完成后不再需要,会被释放掉。根据上面的内存布局,可以列出初始化宏和内存的对应关系:

_init_begin              -------------------

                        |  .init.text       | ---- __init

                        |-------------------|

                        |  .init.data       | ---- __initdata

_setup_start       |-------------------|

                        |  .init.setup      | ---- __setup_param

__initcall_start   |-------------------|

                        |  .initcall1.init  | ---- core_initcall

                        |-------------------|

                        |  .initcall2.init  | ---- postcore_initcall

                        |-------------------|

                        |  .initcall3.init  | ---- arch_initcall

                        |-------------------|

                        |  .initcall4.init  | ---- subsys_initcall

                        |-------------------|

                        |  .initcall5.init  | ---- fs_initcall

                        |-------------------|

                        |  .initcall6.init  | ---- device_initcall

                        |-------------------|

                        |  .initcall7.init  | ---- late_initcall

__initcall_end    |-------------------|

                        |                   |

                        |    ... ... ...    |

                        |                   |

__init_end              -------------------

而各个initcall被调用的地方在kernel_init-》do_basic_setup-》do_initcalls里面:

static void __init do_initcalls(void)
{
    initcall_t *call;
    int count = preempt_count();

    for (call = __initcall_start; call < __initcall_end; call++) {
        ktime_t t0, t1, delta;
        char *msg = NULL;
        char msgbuf[40];
        int result;

        if (initcall_debug) {
            printk("Calling initcall 0x%p", *call);
            print_fn_descriptor_symbol(": %s()",
                    (unsigned long) *call);
            printk("\n");
            t0 = ktime_get();
        }

        result = (*call)();
...
}

到此这篇关于C语言 module_init函数与initcall案例详解的文章就介绍到这了,更多相关C语言 module_init函数与initcall内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言 OutputDebugString与格式化输出函数OutputDebugPrintf案例详解

    OutputDebugString属于windows API的,所以只要是包含了window.h这个头文件后就可以使用了.可以把调试信息输出到编译器的输出窗口,还可以用DbgView(本机或TCP远程)这样的工具查看,这样就可以脱离编译器了.   OutputDebugString 默认只能输入一个参数,不能像printf那样格式化输出,下面改造成类似printf函数的输出方式. #include <windows.h> #include <stdio.h> //#include

  • C语言操作符基础知识图文详解

    目录 1.算术操作符 + - * / % 2.移位操作符 >> (右移操作符) <<(左移操作符) 左移操作符:<< 右移操作符:>> 3.位操作符 3.1 & 按位与 3.2 | 按位或 3.3 ^ 按位异或 3.4 ~ 按位取反 4.赋值操作符 = 5.逻辑操作符 5.1 ! 非 5.2 && 与 5.3 || 或 6.条件运算符 ? 7.单目操作符 7.1 ! 7.2 + 正值 7.3 - 负值 7.4 & 取地址 7.

  • C语言JNI的动态注册详解

    目录 总结 JNI的静态注册就是Javah生成头文件,本章第一篇已经讲过,现在我们来讲讲第二种方式,JNI动态注册.首先是module的build.gradle: android { compileSdkVersion 30 buildToolsVersion "30.0.3" defaultConfig { applicationId "com.jhzl.a7_jni_2way" minSdkVersion 21 targetSdkVersion 30 versi

  • C语言中栈的两种实现方法详解

    目录 一.顺序栈 二.链式栈 总结 一.顺序栈 #include<stdio.h> #include<stdlib.h> #define maxsize 64 //定义栈 typedef struct { int data[maxsize]; int top; }sqstack,*sqslink; //设置栈空 void Clearstack(sqslink s) { s->top=-1; } //判断栈空 int Emptystack(sqslink s) { if (s-

  • C语言 TerminateProcess函数案例详解

    TerminateProcess 顾名思义,就是终止进程的意思. 是WindowsAPI的函数, 示例代码如下: // Demo.cpp : 定义控制台应用程序的入口点. //终止进程Demo #include "stdafx.h" using namespace std; //@param:dwpid:指定需要关闭的进程pid int CloseProcess(DWORD dwpid) { HANDLE hProcess = OpenProcess(PROCESS_TERMINATE

  • C语言 指针的初始化赋值案例详解

    目录 1.指针的初始化 2.指针的赋值 3.指针常量 4.指针初始化补充 5.void *型指针 6.指向指针的指针 1.指针的初始化 指针初始化时,"="的右操作数必须为内存中数据的地址,不能够是变量,也不能够直接用整型地址值(可是int*p=0;除外,该语句表示指针为空).此时,*p仅仅是表示定义的是个指针变量,并没有间接取值的意思. 比如: int a = 25; int *ptr = &a; int b[10]; int *point = b; int *p = &am

  • 基于C语言的库封装发布技术详解

    目录 1. C动态链接库是一种即成标准 2. 用C++制作C的库 2.1 使用void * 作为句柄 2.2 导出这些方法 3. 使用库 4. 经典的范例:libuhd 总结 每年实验课,总有同学问我,如何生成DLL.如何导出类,如何不花很多时间精力,就设计出一个给别人用的爽的功能库呢?结合这些年的实践,我们今天就来聊一聊动态链接库的封装发布.您也可以直接跳到文章最后,去github查看C++/C混合库的经典案例--Ettus uhd 要让自己的库好用,又通用,该怎么办?重要的事情说前面: 不要

  • C语言自定义类型详解(结构体、枚举、联合体和位段)

    目录 前言 一.结构体 1.结构体类型的声明 2.结构体的自引用 3.结构体变量的定义和初始化 4.结构体内存对齐 5.结构体传参 二.位段 1.位段的定义 2.位段的内存分配 3.位段的应用 三.枚举 1.枚举类型的定义 2.枚举的优点 3.枚举的使用 四.联合体(共用体) 1.联合体的定义 2.联合体的特点 3.联合体的大小计算 总结 前言 一.结构体 1.结构体类型的声明 当我们想要描述一个复杂变量--学生,可以这样声明. ✒️代码展示: struct Stu { char name[20

  • C语言 module_init函数与initcall案例详解

    module_init这个函数对做驱动的人来说肯定很熟悉,这篇文章用来跟一下这个函数的实现. 在include/linux/init.h里面有module_init的定义,自然,因为一个module可以在内核启动时自动加载进内核,也可以由我们手动在需要时加载进内核,基于这种场景,内核使用了MODULE这个宏,见代码: #ifndef MODULE #ifndef __ASSEMBLY__ ... #define __define_initcall(level,fn,id) \ static in

  • SQL之patindex函数的用法案例详解

    语法格式:PATINDEX ( '%pattern%' , expression ) 返回pattern字符串在表达式expression里第一次出现的位置,起始值从1开始算. pattern字符串在expression表达式里没找就返回0,对所有有效的文本和字符串就是有效的数据类型. 描述一下此函数的具体用法: 1. PATINDEX ( '%pattern%' , expression ) '%pattern%'的用法类似于 like '%pattern%'的用法,也就是模糊查找其patte

  • python内置函数之slice案例详解

    英文文档: class slice(stop) class slice(start, stop[, step]) Return a slice object representing the set of indices specified by range(start, stop, step). The start and step arguments default to None. Slice objects have read-only data attributes start, st

  • C语言字符函数isalnum()和iscntrl()详解

      isalnum() 函数用于检查所传的字符是否是字母或者十进制数字.它的函数原型如下: _CRTIMP int __cdecl isalnum(int _C);   返回值为非零(真)表示参数c是字母或者十进制数字,返回值为零(假)表示参数c既不是十进制数字,也不是字母.   下面通过一个简单的例子来演示它的用法. #include <stdio.h> #include <ctype.h> int main() { int var1 = 'a'; int var2 = '8';

  • C语言qsort()函数的使用方法详解

    目录 前言 1.参数含义 1.首元素地址base 2.元素个数num 3.元素大小size 4.自定义比较函数compar 2.使用方式 1.头文件 2.compar的实现 3.整体代码 总结 前言 qsort()函数(quick sort)是八大排序算法中的快速排序,能够排序任意数据类型的数组其中包括整形,浮点型,字符串甚至还有自定义的结构体类型. 1.参数含义 void qsort (void* base, size_t num, size_t size,int (*compar)(cons

  • C语言 map函数的基础用法详解

    目录 map map具体操作 总结 map 有N个学生的姓名name和学号ID,要求给你一个学生的name求查找他的ID. 简单做法是定义 string name [ N ] 和 int ID[ N ] 存储信息,然后在name [ ] 中查找这个学生,找到后输出他的ID.但是这样的缺点是需要查找所有的name [ N ],时间复杂度是O( N ),效率低下. 利用 STL 中 map容器 可以快速实现查找,复杂度是O( log 2 N ). map是关联容器,它实现从键(key)到值(valu

  • C语言main()函数的参数问题详解

    #include<stdio.h> void main(int argc, char* argv[]) { while (argc > 1) { ++argv; printf("%s\n", argv); --argc; } } #include<stdio.h> #include<stdlib.h> void main(int argc, char* argv[]) { int i; printf("The number of st

  • C语言之system函数案例详解

    来看看在windows操作系统下system () 函数详解(主要是在C语言中的应用) 注意:在windows下的system函数中命令可以不区别大小写! 函数名: system 功 能: 发出一个DOS命令 用 法: int system(char *command); system函数已经被收录在标准c库中,可以直接调用. 例如: #include<stdio.h> #include<stdlib.h> int main() { printf("About to sp

  • C语言strtod()函数案例详解

    前言 网上有很多关于strtod()函数的文章,不过大部分都是用strtod()函数转换一个字符 char *str = "111.11"; char *target; double ret; ret = strtod(str, &target); 很少有转换字符串的这样的用法 char *p = "111.11 -2.22 Nan nan(2) inF 0X1.BC70A3D70A3D7P+6 1.18973e+4932zzz"; 本文主要参考strtod

随机推荐