Python深度学习pytorch神经网络块的网络之VGG

目录
  • VGG块
  • VGG网络
  • 训练模型

与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络结构的设计也逐渐变得更加抽象。研究人员开始从单个神经元的角度思考问题,发展到整个层次,现在又转向模块,重复各层的模式。

使用块的想法首先出现在牛津大学的视觉几何组(visualgeometry Group)(VGG)的VGG网络中。通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的结构。

VGG块

经典卷积神经网络的基本组成部分是下面的这个序列:

1.带填充以保持分辨率的卷积层

2.非线性激活函数,如ReLU

3.汇聚层,如最大汇聚层

而一个VGG块与之类似,由一系列卷积层组成,后面再加上用于空间下采样的最大汇聚层。

在最初的VGG论文中,作者使用了带有 3 × 3卷积核、填充为1(保持高度和宽度)的卷积层,和带有 2 × 2 池化窗口、步幅为2(每个块后的分辨率减半)的最大汇聚层。

在下面的代码中,我们定义了一个名为vgg_block的函数来实现VGG块。

该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels和输出通道的数量out_channels。

import torch
from torch import nn
from d2l import torch as d2l

def vgg_block(num_convs, in_channels, out_channels):
	layers = []
	for _ in range(num_convs):
		layers.append(nn.Conv2d(in_channels, out_channels, kernel_size = 3, padding=1))
		leyers.append(nn.ReLU())
		in_channels = out_channels
	layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
	return nn.Sequential(*layers)

VGG网络

与AlexNet、LeNet一样,VGG网络可以分为两个部分:第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。如下图所示:

VGG神经网络连续连接上图的几个VGG块(在vgg_block函数中定义)。其中有超参数变量conv_arch。该变量指定了每个VGG块里的卷积层的个数和输出通道数。全连接模块则与AlexNet中的相同。

原始VGG网络中有5个卷积块,其中前两个块各有一个卷积层,后三个块包含两个卷积层。第一个模块有64个输出通道,每个后续模块将输出通道数量翻倍,直到数字达到512。由于该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11。

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

下面的代码实现了VGG-11。可以通过在conv_arch上执行for循环来简单实现。

def vgg(conv_arch):
	conv_blks = []
	in_channels = 1
	# 卷积层部分
	for (num_convs, out_channels) in conv_arch:
		conv_blks.append(vgg_block(num_convs, in_cannels, out_channels))
		in_channels = out_channels

	return nn.Sequential(
		*conv_blks, nn.Flatten(),
		# 全连接层部分
		nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
		nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
		nn.Linear(4096, 10)
	)

net = vgg(conv_arch)

接下来,我们将构建一个高度和宽度为224的单通道数据样本,以观察每个层输出的形状。

X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
	X = blk(X)
	print(blk.__class__.__name__, 'output shape: \t', X.shape)
Sequential output shape: torch.Size([1, 64, 112, 112])
Sequential output shape: torch.Size([1, 128, 56, 56])
Sequential output shape: torch.Size([1, 256, 28, 28])
Sequential output shape: torch.Size([1, 512, 14, 14])
Sequential output shape: torch.Size([1, 512, 7, 7])
Flatten output shape: torch.Size([1, 25088])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 10])

我们在每个块的高度和宽度减半,最终高度和宽度都为7。最后再展平表示,送入全连接层处理。

训练模型

由于VGG-11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络,足够用于训练Fashion-MNIST数据集。

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

除了使用略高的学习率外,模型训练过程与AlexNet类似。

lr, num_epochs, batch_size = 0.05, 10, 128

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.175, train axx 0.935, test acc 0.917
2559.6 examples/sec on cuda:0

以上就是Python神经网络块的网络之VGG深度学习的详细内容,更多关于Python神经网络VGG块的网络的资料请关注我们其它相关文章!

(0)

相关推荐

  • 简单易懂Pytorch实战实例VGG深度网络

    简单易懂Pytorch实战实例VGG深度网络 模型VGG,数据集cifar.对照这份代码走一遍,大概就知道整个pytorch的运行机制. 来源 定义模型: '''VGG11/13/16/19 in Pytorch.''' import torch import torch.nn as nn from torch.autograd import Variable cfg = {     'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M

  • python机器学习之神经网络实现

    神经网络在机器学习中有很大的应用,甚至涉及到方方面面.本文主要是简单介绍一下神经网络的基本理论概念和推算.同时也会介绍一下神经网络在数据分类方面的应用. 首先,当我们建立一个回归和分类模型的时候,无论是用最小二乘法(OLS)还是最大似然值(MLE)都用来使得残差达到最小.因此我们在建立模型的时候,都会有一个loss function. 而在神经网络里也不例外,也有个类似的loss function. 对回归而言: 对分类而言: 然后同样方法,对于W开始求导,求导为零就可以求出极值来. 关于式子中

  • Python实现的NN神经网络算法完整示例

    本文实例讲述了Python实现的NN神经网络算法.分享给大家供大家参考,具体如下: 参考自Github开源代码:https://github.com/dennybritz/nn-from-scratch 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) sklearn(人工智能包,生成数据使用) 计算过程 输入样例 none 代码实现 # -*- coding:utf-8 -*- #!python3 __author__ = 'Wsine' im

  • python构建深度神经网络(DNN)

    本文学习Neural Networks and Deep Learning 在线免费书籍,用python构建神经网络识别手写体的一个总结. 代码主要包括两三部分: 1).数据调用和预处理 2).神经网络类构建和方法建立 3).代码测试文件 1)数据调用: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:11 # @Author : CC # @File : net_load_data.py # @Soft

  • Pytorch抽取网络层的Feature Map(Vgg)实例

    这边我是需要得到图片在Vgg的5个block里relu后的Feature Map (其余网络只需要替换就可以了) 索引可以这样获得 vgg = models.vgg19(pretrained=True).features.eval() print (vgg) Feature Map可利用下面的class class Vgg16(nn.Module): def __init__(self, pretrained=True): super(Vgg16, self).__init__() self.n

  • Python深度学习pytorch神经网络块的网络之VGG

    目录 VGG块 VGG网络 训练模型 与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络结构的设计也逐渐变得更加抽象.研究人员开始从单个神经元的角度思考问题,发展到整个层次,现在又转向模块,重复各层的模式. 使用块的想法首先出现在牛津大学的视觉几何组(visualgeometry Group)(VGG)的VGG网络中.通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的结构. VGG块 经典卷积神经网络的基本组成部分是下面的这个序列: 1.带填充以保

  • Python深度学习pytorch神经网络Dropout应用详解解

    目录 扰动的鲁棒性 实践中的dropout 简洁实现 扰动的鲁棒性 在之前我们讨论权重衰减(L2​正则化)时看到的那样,参数的范数也代表了一种有用的简单性度量.简单性的另一个有用角度是平滑性,即函数不应该对其输入的微笑变化敏感.例如,当我们对图像进行分类时,我们预计向像素添加一些随机噪声应该是基本无影响的. dropout在正向传播过程中,计算每一内部层同时注入噪声,这已经成为训练神经网络的标准技术.这种方法之所以被称为dropout,因为我们从表面上看是在训练过程中丢弃(drop out)一些

  • Python深度学习pytorch神经网络图像卷积运算详解

    目录 互相关运算 卷积层 特征映射 由于卷积神经网络的设计是用于探索图像数据,本节我们将以图像为例. 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算.在卷积层中,输入张量和核张量通过互相关运算产生输出张量. 首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示.下图中,输入是高度为3.宽度为3的二维张量(即形状为 3 × 3 3\times3 3×3).卷积核的高度和宽度都是2. 注意,

  • Python深度学习pytorch神经网络多输入多输出通道

    目录 多输入通道 多输出通道 1 × 1 1\times1 1×1卷积层 虽然每个图像具有多个通道和多层卷积层.例如彩色图像具有标准的RGB通道来指示红.绿和蓝.但是到目前为止,我们仅展示了单个输入和单个输出通道的简化例子.这使得我们可以将输入.卷积核和输出看作二维张量. 当我们添加通道时,我们的输入和隐藏的表示都变成了三维张量.例如,每个RGB输入图像具有 3 × h × w 3\times{h}\times{w} 3×h×w的形状.我们将这个大小为3的轴称为通道(channel)维度.在本节

  • Python深度学习pytorch神经网络填充和步幅的理解

    目录 填充 步幅 上图中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维度为 2 × 2 2\times2 2×2.从上图可看出卷积的输出形状取决于输入形状和卷积核的形状. 填充 以上面的图为例,在应用多层卷积时,我们常常丢失边缘像素. 解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0). 例如,在上图中我们将 3 × 3 3\times3 3×3输入填充到 5 × 5 5\times5 5×5,那么它的输出就增加为 4 × 4

  • Python深度学习pytorch神经网络汇聚层理解

    目录 最大汇聚层和平均汇聚层 填充和步幅 多个通道 我们的机器学习任务通常会跟全局图像的问题有关(例如,"图像是否包含一只猫呢?"),所以我们最后一层的神经元应该对整个输入的全局敏感.通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层. 此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性.例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[

  • Python深度学习pytorch神经网络多层感知机简洁实现

    我们可以通过高级API更简洁地实现多层感知机. import torch from torch import nn from d2l import torch as d2l 模型 与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层.第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数.第二层是输出层. net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 1

  • Python深度学习pytorch卷积神经网络LeNet

    目录 LeNet 模型训练 在本节中,我们将介绍LeNet,它是最早发布的卷积神经网络之一.这个模型是由AT&T贝尔实验室的研究院Yann LeCun在1989年提出的(并以其命名),目的是识别手写数字.当时,LeNet取得了与支持向量机性能相媲美的成果,成为监督学习的主流方法.LeNet被广泛用于自动取款机中,帮助识别处理支票的数字. LeNet 总体来看,LeNet(LeNet-5)由两个部分组成: 卷积编码器: 由两个卷积层组成 全连接层密集快: 由三个全连接层组成 每个卷积块中的基本单元

  • Python深度学习pyTorch权重衰减与L2范数正则化解析

    下面进行一个高维线性实验 假设我们的真实方程是: 假设feature数200,训练样本和测试样本各20个 模拟数据集 num_train,num_test = 10,10 num_features = 200 true_w = torch.ones((num_features,1),dtype=torch.float32) * 0.01 true_b = torch.tensor(0.5) samples = torch.normal(0,1,(num_train+num_test,num_fe

  • Python深度学习pytorch实现图像分类数据集

    目录 读取数据集 读取小批量 整合所有组件 目前广泛使用的图像分类数据集之一是MNIST数据集.如今,MNIST数据集更像是一个健全的检查,而不是一个基准. 为了提高难度,我们将在接下来的章节中讨论在2017年发布的性质相似但相对复杂的Fashion-MNIST数据集. import torch import torchvision from torch.utils import data from torchvision import transforms from d2l import to

随机推荐