python 一维二维插值实例

一维插值

插值不同于拟合。插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过。常见插值方法有拉格朗日插值法、分段插值法、样条插值法。

拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂。随着样点增加,高次插值会带来误差的震动现象称为龙格现象。

分段插值:虽然收敛,但光滑性较差。

样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式。由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项式所出现的龙格现象,所以样条插值得到了流行。

在CODE上查看代码片派生到我的代码片

#!/usr/bin/env python
# -*-coding:utf-8 -*-
import numpy as np
from scipy import interpolate
import pylab as pl 

x=np.linspace(0,10,11)
#x=[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
y=np.sin(x)
xnew=np.linspace(0,10,101)
pl.plot(x,y,"ro") 

for kind in ["nearest","zero","slinear","quadratic","cubic"]:#插值方式
 #"nearest","zero"为阶梯插值
 #slinear 线性插值
 #"quadratic","cubic" 为2阶、3阶B样条曲线插值
 f=interpolate.interp1d(x,y,kind=kind)
 # ‘slinear', ‘quadratic' and ‘cubic' refer to a spline interpolation of first, second or third order)
 ynew=f(xnew)
 pl.plot(xnew,ynew,label=str(kind))
pl.legend(loc="lower right")
pl.show() 

结果:

二维插值

方法与一维数据插值类似,为二维样条插值。

在CODE上查看代码片派生到我的代码片

# -*- coding: utf-8 -*-
"""
演示二维插值。
"""
import numpy as np
from scipy import interpolate
import pylab as pl
import matplotlib as mpl 

def func(x, y):
 return (x+y)*np.exp(-5.0*(x**2 + y**2)) 

# X-Y轴分为15*15的网格
y,x= np.mgrid[-1:1:15j, -1:1:15j] 

fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值
print len(fvals[0]) 

#三次样条二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic') 

# 计算100*100的网格上的插值
xnew = np.linspace(-1,1,100)#x
ynew = np.linspace(-1,1,100)#y
fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值 

# 绘图
# 为了更明显地比较插值前后的区别,使用关键字参数interpolation='nearest'
# 关闭imshow()内置的插值运算。
pl.subplot(121)
im1=pl.imshow(fvals, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")#pl.cm.jet
#extent=[-1,1,-1,1]为x,y范围 favals为
pl.colorbar(im1) 

pl.subplot(122)
im2=pl.imshow(fnew, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")
pl.colorbar(im2) 

pl.show() 

左图为原始数据,右图为二维插值结果图。

二维插值的三维展示方法

在CODE上查看代码片派生到我的代码片

# -*- coding: utf-8 -*-
"""
演示二维插值。
"""
# -*- coding: utf-8 -*-
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
from scipy import interpolate
import matplotlib.cm as cm
import matplotlib.pyplot as plt 

def func(x, y):
 return (x+y)*np.exp(-5.0*(x**2 + y**2)) 

# X-Y轴分为20*20的网格
x = np.linspace(-1, 1, 20)
y = np.linspace(-1,1,20)
x, y = np.meshgrid(x, y)#20*20的网格数据 

fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值 

fig = plt.figure(figsize=(9, 6))
#Draw sub-graph1
ax=plt.subplot(1, 2, 1,projection = '3d')
surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x, y)')
plt.colorbar(surf, shrink=0.5, aspect=5)#标注 

#二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')#newfunc为一个函数 

# 计算100*100的网格上的插值
xnew = np.linspace(-1,1,100)#x
ynew = np.linspace(-1,1,100)#y
fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值 np.shape(fnew) is 100*100
xnew, ynew = np.meshgrid(xnew, ynew)
ax2=plt.subplot(1, 2, 2,projection = '3d')
surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True)
ax2.set_xlabel('xnew')
ax2.set_ylabel('ynew')
ax2.set_zlabel('fnew(x, y)')
plt.colorbar(surf2, shrink=0.5, aspect=5)#标注 

plt.show() 

左图的二维数据集的函数值由于样本较少,会显得粗糙。而右图对二维样本数据进行三次样条插值,拟合得到更多数据点的样本值,绘图后图像明显光滑多了。

补充知识:python中对Dataframe二维查表插值的实现方法

今天在计算风力发电机捕捉风能功率的时候,需要对叶片扫略面积内的风能做个功率效率折减,即Cp系数,Cp的定义如下,即实际利用的风能与输入风能的比例

输入风能是空气密度与风速的函数,可以直接计算:

那么实际得到的能力是Pin与Cp的乘积。

Cp通常是一个二维表,横坐标是TSR(叶尖速与风速的比值),纵坐标是PITCH Angle(桨叶角)。风机的运行数据中是包含风速 ,转速以及桨叶角信息的,并且通过直接读入到DataFrame,那么就需要根据TSR与PA对Cp查表并且插值得到Cp。主要用到scipy.interpolate.interp2d创建插值函数并查表,另外Dataframe不能直接用插值函数,这里做了个for循环分行插值查表。

from scipy.interpolate import interp2d
df_rotormap = pd.read_csv('filepath',header = None) #读取Cp表
x = np.array(df_rotormap.iloc[:,0].dropna()) #Cp表的X坐标是TSR
y = np.array(df_rotormap.iloc[:,1]) #Cp表的Y坐标是pitch angle
z = np.array(df_rotormap.iloc[:,2:]) #Cp表的具体值,y行x列

rho = 1.225 #kg/m3
s = (141/2)**2*np.pi #m2
df_cal['TSR'] = df_cal['发电机转速(PDM1)']/148*141*np.pi/60/df_cal['风速']

func_new = interp2d(x,y,z,kind = 'linear') #定义二维表插值函数,选择线性插值

cp_list = []
for i in range(df_cal.shape[0]):
 cp = float(func_new(df_cal['TSR'][i],df_cal['1号桨叶角度'][i])) #输入X,Y坐标, 输出插值计算的Cp
 cp_list.append(cp)

df_cal['cp'] = cp_list #把Cp放回到Dataframe中去

df_cal['air_power'] = 0.5*rho*s*df_cal['风速']**3*df_cal['cp']

以上这篇python 一维二维插值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python实现各种插值法(数值分析)

    一维插值 插值不同于拟合.插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过.常见插值方法有拉格朗日插值法.分段插值法.样条插值法. 拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂.随着样点增加,高次插值会带来误差的震动现象称为龙格现象. 分段插值:虽然收敛,但光滑性较差. 样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式.由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项

  • python实现二维插值的三维显示

    本文实例为大家分享了二维插值的三维显示具体代码,供大家参考,具体内容如下 # -*- coding: utf-8 -*- """ 演示二维插值. """ # -*- coding: utf-8 -*- import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib as mpl from scipy import interpolate import mat

  • Python对数据进行插值和下采样的方法

    使用Python进行插值非常方便,可以直接使用scipy中的interpolate import numpy as np x1 = np.linspace(1, 4096, 1024) x_new = np.linspace(1, 4096, 4096) from scipy import interpolate tck = interpolate.splrep(x1, data) y_bspline = interpolate.splev(x_new, tck) 其中y_bspline就是从1

  • python 一维二维插值实例

    一维插值 插值不同于拟合.插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过.常见插值方法有拉格朗日插值法.分段插值法.样条插值法. 拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂.随着样点增加,高次插值会带来误差的震动现象称为龙格现象. 分段插值:虽然收敛,但光滑性较差. 样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式.由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项

  • Python创建二维数组实例(关于list的一个小坑)

    0.目录 1.遇到的问题 2.创建二维数组的办法 •3.1 直接创建法 •3.2 列表生成式法 •3.3 使用模块numpy创建 1.遇到的问题 今天写Python代码的时候遇到了一个大坑,差点就耽误我交作业了... 问题是这样的,我需要创建一个二维数组,如下: m = n = 3 test = [[0] * m] * n print("test =", test) 输出结果如下: test = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 是不是看起来没有一点问

  • Python中的二维数组实例(list与numpy.array)

    关于python中的二维数组,主要有list和numpy.array两种. 好吧,其实还有matrices,但它必须是2维的,而numpy arrays (ndarrays) 可以是多维的. 我们主要讨论list和numpy.array的区别: 我们可以通过以下的代码看出二者的区别 >>import numpy as np >>a=[[1,2,3],[4,5,6],[7,8,9]] >>a [[1,2,3],[4,5,6],[7,8,9]] >>type(a

  • python用quad、dblquad实现一维二维积分的实例详解

    背景: python函数库scipy的quad.dblquad实现一维二维积分的范例.需要注意dblquad的积分顺序问题. 代码: import numpy as np from scipy import integrate def half_circle(x): """ 原心:(1,0),半径为1 半圆函数:(x-1)^2+y^2 = 1 """ return (1-(x-1)**2)**0.5 """ 梯形法求

  • python将二维数组升为一维数组或二维降为一维方法实例

    目录 1. 二维(多维)数组降为一维数组 方法1: reshape()+concatenate 函数, 方法2: flatten() 函数, 方法3: itertools.chain 方法4: sum() 方法5:operator.add + reduce 方法6:列表推导式 2. 一维数组升为 2 维数组 方法1:numpy 方法 总结 1. 二维(多维)数组降为一维数组 方法1: reshape()+concatenate 函数, 这个方法是间接法,利用 reshape() 函数的属性,间接

  • python计算二维矩形IOU实例

    计算交并比:交的面积除以并的面积. 要求矩形框的长和宽应该平行于图片框.不然不能用这样的公式计算. 原理,从一维上来理解:两条红线的距离之和减去黑色线之间的距离就是相交的距离.两条红线之和很容易算,两条黑线之间的距离就是最小的起点到到最大的末点,最小的起点好算,最大的末点就是两点加上各自长度之后的最大值.这就算出了一维的情况,二维的情况一样,计算二次而已. def iou(rect1,rect2): ''' 计算两个矩形的交并比 :param rect1:第一个矩形框.表示为x,y,w,h,其中

  • php一维二维数组键排序方法实例总结

    本文实例总结了php一维二维数组键排序方法.分享给大家供大家参考.具体方法如下: 在php中数组排序一直是一个老生常谈的问题,下面我们来集中讲一下关于在php中一维数组与二维数组排序的实现程序,相信对大家有一定的参考借鉴价值. 功能:对数组进行重新排序. 说明:冒泡排序 (一维数组)(二维数组某个健排序) 两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止 设想被排序的数组R[1..N] 垂直竖立,将每个数据元素看作有重量的气泡,从下往上扫描数组,凡

  • 分享Python文本生成二维码实例

    本文实例分享了Python文本生成二维码的详细代码,供大家参考,具体内容如下 测试一:将文本生成白底黑字的二维码图片 测试二:将文本生成带logo的二维码图片 #coding:utf-8 ''' Python生成二维码 v1.0 主要将文本生成二维码图片 测试一:将文本生成白底黑字的二维码图片 测试二:将文本生成带logo的二维码图片 ''' __author__ = 'Xue' import qrcode from PIL import Image import os #生成二维码图片 def

  • python生成二维码的实例详解

    python生成二维码的实例详解 版本相关 操作系统:Mac OS X EI Caption Python版本:2.7 IDE:Sublime Text 3 依赖库 Python生成二维码需要的依赖库为PIL和QRcode. 坑爹的是,百度了好久都没有找到PIL,不知道是什么时候改名了,还是其他原因,pillow就是传说中的PIL. 安装命令:sudo pip install pillow.sudo pip install qrcode 验证是否安装成功,使用命令from PIL import

随机推荐