C++求所有顶点之间的最短路径(用Dijkstra算法)

本文实例为大家分享了C++求所有顶点之间最短路径的具体代码,供大家参考,具体内容如下

一、思路: 不能出现负权值的边

(1)轮流以每一个顶点为源点,重复执行Dijkstra算法n次,就可以求得每一对顶点之间的最短路径及最短路径长度,总的执行时间为O(n的3次方)

(2)另一种方法:用Floyd算法,总的执行时间为O(n的3次方)(另一文章会写)

二、实现程序:

1.Graph.h:有向图

#ifndef Graph_h
#define Graph_h
#include <iostream>
using namespace std;

const int DefaultVertices = 30;

template <class T, class E>
struct Edge { // 边结点的定义
 int dest; // 边的另一顶点位置
 E cost; // 表上的权值
 Edge<T, E> *link; // 下一条边链指针
};

template <class T, class E>
struct Vertex { // 顶点的定义
 T data; // 顶点的名字
 Edge<T, E> *adj; // 边链表的头指针
};

template <class T, class E>
class Graphlnk {
public:
 const E maxValue = 100000; // 代表无穷大的值(=∞)
 Graphlnk(int sz=DefaultVertices); // 构造函数
 ~Graphlnk(); // 析构函数
 void inputGraph(); // 建立邻接表表示的图
 void outputGraph(); // 输出图中的所有顶点和边信息
 T getValue(int i); // 取位置为i的顶点中的值
 E getWeight(int v1, int v2); // 返回边(v1, v2)上的权值
 bool insertVertex(const T& vertex); // 插入顶点
 bool insertEdge(int v1, int v2, E weight); // 插入边
 bool removeVertex(int v); // 删除顶点
 bool removeEdge(int v1, int v2); // 删除边
 int getFirstNeighbor(int v); // 取顶点v的第一个邻接顶点
 int getNextNeighbor(int v,int w); // 取顶点v的邻接顶点w的下一邻接顶点
 int getVertexPos(const T vertex); // 给出顶点vertex在图中的位置
 int numberOfVertices(); // 当前顶点数
private:
 int maxVertices; // 图中最大的顶点数
 int numEdges; // 当前边数
 int numVertices; // 当前顶点数
 Vertex<T, E> * nodeTable; // 顶点表(各边链表的头结点)
};

// 构造函数:建立一个空的邻接表
template <class T, class E>
Graphlnk<T, E>::Graphlnk(int sz) {
 maxVertices = sz;
 numVertices = 0;
 numEdges = 0;
 nodeTable = new Vertex<T, E>[maxVertices]; // 创建顶点表数组
 if(nodeTable == NULL) {
  cerr << "存储空间分配错误!" << endl;
  exit(1);
 }
 for(int i = 0; i < maxVertices; i++)
  nodeTable[i].adj = NULL;
}

// 析构函数
template <class T, class E>
Graphlnk<T, E>::~Graphlnk() {
 // 删除各边链表中的结点
 for(int i = 0; i < numVertices; i++) {
  Edge<T, E> *p = nodeTable[i].adj; // 找到其对应链表的首结点
  while(p != NULL) { // 不断地删除第一个结点
   nodeTable[i].adj = p->link;
   delete p;
   p = nodeTable[i].adj;
  }
 }
 delete []nodeTable; // 删除顶点表数组
}

// 建立邻接表表示的图
template <class T, class E>
void Graphlnk<T, E>::inputGraph() {
 int n, m; // 存储顶点树和边数
 int i, j, k;
 T e1, e2; // 顶点
 E weight; // 边的权值

 cout << "请输入顶点数和边数:" << endl;
 cin >> n >> m;
 cout << "请输入各顶点:" << endl;
 for(i = 0; i < n; i++) {
  cin >> e1;
  insertVertex(e1); // 插入顶点
 }

 cout << "请输入图的各边的信息:" << endl;
 i = 0;
 while(i < m) {
  cin >> e1 >> e2 >> weight;
  j = getVertexPos(e1);
  k = getVertexPos(e2);
  if(j == -1 || k == -1)
   cout << "边两端点信息有误,请重新输入!" << endl;
  else {
   insertEdge(j, k, weight); // 插入边
   i++;
  }
 } // while
}

// 输出有向图中的所有顶点和边信息
template <class T, class E>
void Graphlnk<T, E>::outputGraph() {
 int n, m, i;
 T e1, e2; // 顶点
 E weight; // 权值
 Edge<T, E> *p;

 n = numVertices;
 m = numEdges;
 cout << "图中的顶点数为" << n << ",边数为" << m << endl;
 for(i = 0; i < n; i++) {
  p = nodeTable[i].adj;
  while(p != NULL) {
   e1 = getValue(i); // 有向边<i, p->dest>
   e2 = getValue(p->dest);
   weight = p->cost;
   cout << "<" << e1 << ", " << e2 << ", " << weight << ">" << endl;
   p = p->link; // 指向下一个邻接顶点
  }
 }
}

// 取位置为i的顶点中的值
template <class T, class E>
T Graphlnk<T, E>::getValue(int i) {
 if(i >= 0 && i < numVertices)
  return nodeTable[i].data;
 return NULL;
}

// 返回边(v1, v2)上的权值
template <class T, class E>
E Graphlnk<T, E>::getWeight(int v1, int v2) {
 if(v1 != -1 && v2 != -1) {
  if(v1 == v2) // 说明是同一顶点
   return 0;
  Edge<T , E> *p = nodeTable[v1].adj; // v1的第一条关联的边
  while(p != NULL && p->dest != v2) { // 寻找邻接顶点v2
   p = p->link;
  }
  if(p != NULL)
   return p->cost;
 }
 return maxValue; // 边(v1, v2)不存在,就存放无穷大的值
}

// 插入顶点
template <class T, class E>
bool Graphlnk<T, E>::insertVertex(const T& vertex) {
 if(numVertices == maxVertices) // 顶点表满,不能插入
  return false;
 nodeTable[numVertices].data = vertex; // 插入在表的最后
 numVertices++;
 return true;
}

// 插入边
template <class T, class E>
bool Graphlnk<T, E>::insertEdge(int v1, int v2, E weight) {
 if(v1 == v2) // 同一顶点不插入
  return false;
 if(v1 >= 0 && v1 < numVertices && v2 >= 0 && v2 < numVertices) {
  Edge<T, E> *p = nodeTable[v1].adj; // v1对应的边链表头指针
  while(p != NULL && p->dest != v2) // 寻找邻接顶点v2
   p = p->link;
  if(p != NULL) // 已存在该边,不插入
   return false;
  p = new Edge<T, E>; // 创建新结点
  p->dest = v2;
  p->cost = weight;
  p->link = nodeTable[v1].adj; // 链入v1边链表
  nodeTable[v1].adj = p;
  numEdges++;
  return true;
 }
 return false;
}

// 有向图删除顶点较麻烦
template <class T, class E>
bool Graphlnk<T, E>::removeVertex(int v) {
 if(numVertices == 1 || v < 0 || v > numVertices)
  return false; // 表空或顶点号超出范围

 Edge<T, E> *p, *s;
 // 1.清除顶点v的边链表结点w 边<v,w>
 while(nodeTable[v].adj != NULL) {
  p = nodeTable[v].adj;
  nodeTable[v].adj = p->link;
  delete p;
  numEdges--; // 与顶点v相关联的边数减1
 } // while结束
 // 2.清除<w, v>,与v有关的边
 for(int i = 0; i < numVertices; i++) {
  if(i != v) { // 不是当前顶点v
   s = NULL;
   p = nodeTable[i].adj;
   while(p != NULL && p->dest != v) {// 在顶点i的链表中找v的顶点
    s = p;
    p = p->link; // 往后找
   }
   if(p != NULL) { // 找到了v的结点
    if(s == NULL) { // 说明p是nodeTable[i].adj
     nodeTable[i].adj = p->link;
    } else {
     s->link = p->link; // 保存p的下一个顶点信息
    }
    delete p; // 删除结点p
    numEdges--; // 与顶点v相关联的边数减1
   }
  }
 }
 numVertices--; // 图的顶点个数减1
 nodeTable[v].data = nodeTable[numVertices].data; // 填补,此时numVertices,比原来numVertices小1,所以,这里不需要numVertices-1
 nodeTable[v].adj = nodeTable[numVertices].adj;
 // 3.要将填补的顶点对应的位置改写
 for(int i = 0; i < numVertices; i++) {
  p = nodeTable[i].adj;
  while(p != NULL && p->dest != numVertices) // 在顶点i的链表中找numVertices的顶点
   p = p->link; // 往后找
  if(p != NULL) // 找到了numVertices的结点
   p->dest = v; // 将邻接顶点numVertices改成v
 }
 return true;
}

// 删除边
template <class T, class E>
bool Graphlnk<T, E>::removeEdge(int v1, int v2) {
 if(v1 != -1 && v2 != -1) {
  Edge<T, E> * p = nodeTable[v1].adj, *q = NULL;
  while(p != NULL && p->dest != v2) { // v1对应边链表中找被删除边
   q = p;
   p = p->link;
  }
  if(p != NULL) { // 找到被删除边结点
   if(q == NULL) // 删除的结点是边链表的首结点
    nodeTable[v1].adj = p->link;
   else
    q->link = p->link; // 不是,重新链接
   delete p;
   return true;
  }
 }
 return false; // 没有找到结点
}

// 取顶点v的第一个邻接顶点
template <class T, class E>
int Graphlnk<T, E>::getFirstNeighbor(int v) {
 if(v != -1) {
  Edge<T, E> *p = nodeTable[v].adj; // 对应链表第一个边结点
  if(p != NULL) // 存在,返回第一个邻接顶点
   return p->dest;
 }
 return -1; // 第一个邻接顶点不存在
}

// 取顶点v的邻接顶点w的下一邻接顶点
template <class T, class E>
int Graphlnk<T, E>::getNextNeighbor(int v,int w) {
 if(v != -1) {
  Edge<T, E> *p = nodeTable[v].adj; // 对应链表第一个边结点
  while(p != NULL && p->dest != w) // 寻找邻接顶点w
   p = p->link;
  if(p != NULL && p->link != NULL)
   return p->link->dest; // 返回下一个邻接顶点
 }
 return -1; // 下一个邻接顶点不存在
}

// 给出顶点vertex在图中的位置
template <class T, class E>
int Graphlnk<T, E>::getVertexPos(const T vertex) {
 for(int i = 0; i < numVertices; i++)
  if(nodeTable[i].data == vertex)
   return i;
 return -1;
}

// 当前顶点数
template <class T, class E>
int Graphlnk<T, E>::numberOfVertices() {
 return numVertices;
}

#endif /* Graph_h */

2.Dijkstra.h

#ifndef Dijkstra_h
#define Dijkstra_h
#include "Graph.h"

template <class T, class E>
void ShortestPath(Graphlnk<T, E> &G, E dist[], int path[]) {
 int n = G.numberOfVertices(); // 顶点数

 for(int i = 0; i < n; i++) {
  Dijkstra(G, i, dist, path); // 调用Dijkstra函数
  printShortestPath(G, i, dist, path); // 输出最短路径
  cout << endl;
 }
}

// Dijkstra算法
template <class T, class E>
void Dijkstra(Graphlnk<T, E> &G, int v, E dist[], int path[]) {
 // Graph是一个带权有向图,dist[]是当前求到的从顶点v到顶点j的最短路径长度,同时用数组
 // path[]存放求到的最短路径
 int n = G.numberOfVertices(); // 顶点数
 bool *s = new bool[n]; // 最短路径顶点集
 int i, j, k, u;
 E w, min;

 for(i = 0; i < n; i++) {
  dist[i] = G.getWeight(v,i); // 数组初始化,获取(v,i)边的权值
  s[i] = false; // 该顶点未被访问过
  if(i != v && dist[i] < G.maxValue) // 顶点i是v的邻接顶点
   path[i] = v; // 将v标记为顶点i的最短路径
  else
   path[i] = -1; // 说明该顶点i与顶点v没有边相连
 }
 s[v] = true; // 标记为访问过,顶点v加入s集合中
 dist[v] = 0;
 for(i = 0; i < n-1; i++) {
  min = G.maxValue;
  u = v; // 选不在生成树集合s[]中的顶点
  // 1.找v的权值最小且未被访问过的邻接顶点w,<v,w>
  for(j = 0; j < n; j++) {
   if(s[j] == false && dist[j] < min) {
    u = j;
    min = dist[j];
   }
  }
  s[u] = true; // 将顶点u加入到集合s
  for(k = 0; k < n; k++) { // 修改
   w = G.getWeight(u, k);
   if(s[k] == false && w < G.maxValue && dist[u] + w < dist[k]) {
    // 顶点k未被访问过,且从v->u->k的路径比v->k的路径短
    dist[k] = dist[u] + w;
    path[k] = u; // 修改到k的最短路径
   }
  }
 }
}

// 从path数组读取最短路径的算法
template <class T, class E>
void printShortestPath(Graphlnk<T, E> &G, int v, E dist[], int path[]) {
 int i, j, k, n = G.numberOfVertices();
 int *d = new int[n];

 cout << "从顶点" << G.getValue(v) << "到其他各顶点的最短路径为:" << endl;
 for(i = 0; i < n; i++) {
  if(i != v) { // 如果不是顶点v
   j = i;
   k = 0;
   while(j != v) {
    d[k++] = j;
    j = path[j];
   }
   cout << "顶点" << G.getValue(i) << "的最短路径为:" << G.getValue(v);
   while(k > 0)
    cout << "->" << G.getValue(d[--k]);
   cout << ",最短路径长度为:" << dist[i] << endl;
  }
 }
}

#endif /* Dijkstra_h */

3.main.cpp

/*
 测试数据:
 4 8
 0 1 2 3
 0 1 1
 0 3 4
 1 2 9
 1 3 2
 2 0 3
 2 1 5
 2 3 8
 3 2 6
 */

#include "Dijkstra.h"

const int maxSize = 40;

int main(int argc, const char * argv[]) {
 Graphlnk<char, int> G; // 声明图对象
 int dist[maxSize], path[maxSize];

 // 创建图
 G.inputGraph();
 cout << "图的信息如下:" << endl;
 G.outputGraph();
 // 求所有顶点之间的最短路径
 ShortestPath(G, dist, path);
 return 0;
}

测试结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • C++用Dijkstra(迪杰斯特拉)算法求最短路径

    算法介绍 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低. 算法思想 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增

  • C++计算任意权值的单源最短路径(Bellman-Ford)

    本文实例为大家分享了C++计算任意权值单源最短路径的具体代码,供大家参考,具体内容如下 一.有Dijkstra算法求最短路径了,为什么还要用Bellman-Ford算法 Dijkstra算法不适合用于带有负权值的有向图. 如下图: 用Dijkstra算法求顶点0到各个顶点的最短路径: (1)首先,把顶点0添加到已访问顶点集合S中,选取权值最小的邻边<0, 2>,权值为5 记录顶点2的最短路径为:dist[2]=5, path[2]=0,把顶点2添加到集合S中. 顶点2,没有邻边(从顶点2出发,

  • Dijkstra算法最短路径的C++实现与输出路径

    某个源点到其余各顶点的最短路径 这个算法最开始心里怕怕的,不知道为什么,花了好长时间弄懂了,也写了一遍,又遇到时还是出错了,今天再次写它,心里没那么怕了,耐心研究,懂了之后会好开心的,哈哈 Dijkstra算法: 图G 如图:若要求从顶点1到其余各顶点的最短路径,该咋求: 迪杰斯特拉提出"按最短路径长度递增的次序"产生最短路径. 首先,在所有的这些最短路径中,长度最短的这条路径必定只有一条弧,且它的权值是从源点出发的所有弧上权的最小值,例如:在图G中,从源点1出发有3条弧,其中以弧(1

  • c++查询最短路径示例

    复制代码 代码如下: //shortest_path.c#include<stdio.h>#include<stdlib.h>//用file#include<string.h>//可用gets(),puts()#include"shortest_path.h"#define MAX 32767#define MENU "欢迎进入导航系统!\n==========菜单===========\n0.载入北外地图\n1.建立地图\n2.查询最短路

  • C++所有顶点之间的最短路径

    本文实例为大家分享了C++所有顶点之间最短路径的具体代码,供大家参考,具体内容如下 一.思路: 不能出现负权值的边 用Floyd算法,总的执行时间为O(n的3次方) k从顶点0一直到顶点n-1, 如果,有顶点i到顶点j之间绕过k,使得两顶点间的路径更短,即dist[i][k] + dist[k][j] < dist[i][j],则修改:dist[i][j] 如:(1)当k=0时, 顶点2绕过顶点0到达顶点1,使得路径为:3+1 < dist[2][1],所以,要修改dist[2][1]=4,同

  • C++实现多源最短路径之Floyd算法示例

    本文实例讲述了C++实现多源最短路径之Floyd算法.分享给大家供大家参考,具体如下: #include<cstdio> #include<cstring> #include<iostream> #define MAX 999 using namespace std; int n,m; int e[MAX][MAX]; void Init() { for(int i=1; i<=n; ++i) for(int j=1; j<=n; ++j) { if(i==

  • C++求所有顶点之间的最短路径(用Dijkstra算法)

    本文实例为大家分享了C++求所有顶点之间最短路径的具体代码,供大家参考,具体内容如下 一.思路: 不能出现负权值的边 (1)轮流以每一个顶点为源点,重复执行Dijkstra算法n次,就可以求得每一对顶点之间的最短路径及最短路径长度,总的执行时间为O(n的3次方) (2)另一种方法:用Floyd算法,总的执行时间为O(n的3次方)(另一文章会写) 二.实现程序: 1.Graph.h:有向图 #ifndef Graph_h #define Graph_h #include <iostream> u

  • C++求所有顶点之间的最短路径(用Floyd算法)

    本文实例为大家分享了C++所有顶点之间最短路径的具体代码,供大家参考,具体内容如下 一.思路: 不能出现负权值的边 用Floyd算法,总的执行时间为O(n的3次方) k从顶点0一直到顶点n-1, 如果,有顶点i到顶点j之间绕过k,使得两顶点间的路径更短,即dist[i][k] + dist[k][j] < dist[i][j],则修改:dist[i][j] 如:(1)当k=0时, 顶点2绕过顶点0到达顶点1,使得路径为:3+1 < dist[2][1],所以,要修改dist[2][1]=4,同

  • python3实现Dijkstra算法最短路径的实现

    问题描述 现有一个有向赋权图.如下图所示: 问题:根据每条边的权值,求出从起点s到其他每个顶点的最短路径和最短路径的长度. 说明:不考虑权值为负的情况,否则会出现负值圈问题. s:起点 v:算法当前分析处理的顶点 w:与v邻接的顶点 d v d_v dv​:从s到v的距离 d w d_w dw​:从s到w的距离 c v , w c_{v,w} cv,w​:顶点v到顶点w的边的权值 问题分析 Dijkstra算法按阶段进行,同无权最短路径算法(先对距离为0的顶点处理,再对距离为1的顶点处理,以此类

  • C语言求解无向图顶点之间的所有最短路径

    本文实例为大家分享了C语言求解无向图顶点之间的所有最短路径的具体代码,供大家参考,具体内容如下 思路一: DFS,遇到终点之后进行记录 辅助存储: std::vector<int> tempPath; std::vector<std::vector<int>> totalPath; 实现: //查找无向图的所有最短路径,直接dfs就可以解决了 //记录保存这里用 vector<vector<int>> 插入失败,重新搞一下 OK // 时间复杂度

  • C++ Dijkstra算法之求图中任意两顶点的最短路径

    Dijkstra算法是图中找任意两点中最短路径的一种经典算法. 重点的步骤总结如下: 1.算法采用了并查集 (之后都叫它为 最短路径顶点集 ):即每次都找离开始顶点距离最短的顶点,然后把该顶点加入最短路径顶点集中(已经加入最短路径顶点集里的那些顶点 下一次就会跳过它了,并且,在顶点集里 任意两个顶点间的距离 都已经是最短) 2.用来记录从源点(开始顶点) 到vi (0<=i<=numVertices) 的最短距离 的数组dist[numVertices] ,并且这个数组的元素值是会不断变化的,

  • JS使用Dijkstra算法求解最短路径

    一.Dijkstra算法的思路 Dijkstra算法是针对单源点求最短路径的算法. 其主要思路如下: 1. 将顶点分为两部分:已经知道当前最短路径的顶点集合Q和无法到达顶点集合R. 2. 定义一个距离数组(distance)记录源点到各顶点的距离,下标表示顶点,元素值为距离.源点(start)到自身的距离为0,源点无法到达的顶点的距离就是一个大数(比如Infinity). 3. 以距离数组中值为非Infinity的顶点V为中转跳点,假设V跳转至顶点W的距离加上顶点V至源点的距离还小于顶点W至源点

  • Java利用Dijkstra算法求解拓扑关系最短路径

    目录 算法简介 代码实现思路 算法思想 代码示例 算法简介 迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学迪家迪杰斯特拉于1959年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点最短路劲算法,解决的是有权图中最短路径问题.迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止. 代码实现思路 1.先初始化源节点(起始点)到其他各个拓扑节点的最短距离,可以用map存放,key为节点,value为节点到源节点的距

  • java实现最短路径算法之Dijkstra算法

    前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是"贪心算法"的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备: 1.表示图的数据结构 用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵. 图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 从上面可以看出,无

随机推荐