C++ OpenCV实战之图像透视矫正

目录
  • 前言
  • 一、图像预处理
  • 二、轮廓提取
    • 1.提取最外轮廓
    • 2.提取矩形四个角点
    • 3.将矩形角点排序
  • 三、透视矫正
  • 四、源码

前言

本文将使用OpenCV C++ 进行图像透视矫正。

一、图像预处理

原图如图所示。首先进行图像预处理。将图像进行灰度、滤波、二值化、形态学等操作,目的是为了下面的轮廓提取。在这里我还使用了形态学开、闭操作,目的是使整个二值图像连在一起。大家在做图像预处理时,可以根据图像特征自行处理。

	Mat gray;
	cvtColor(src, gray, COLOR_BGR2GRAY);

	Mat gaussian;
	GaussianBlur(gray, gaussian, Size(3, 3), 0);

	Mat thresh;
	threshold(gaussian, thresh, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);

	Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
	Mat open;
	morphologyEx(thresh, open, MORPH_OPEN, kernel);

	Mat kernel1 = getStructuringElement(MORPH_RECT, Size(7, 7));
	Mat close;
	morphologyEx(open, close, MORPH_CLOSE, kernel1);

如图就是经过图像预处理得到的二值图像。

二、轮廓提取

1.提取最外轮廓

	vector<vector<Point>>contours;
	findContours(close, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);

使用findContours、RETR_EXTERNAL就可以提取出物体最外轮廓。

2.提取矩形四个角点

接下来将使用approxPolyDP进行多边形轮廓拟合,目的是为了找到矩形的四个角点。关于approxPolyDP API大家可以自行百度查看其用法。

	vector<vector<Point>>conPoly(contours.size());
	vector<Point>srcPts;

	for (int i = 0; i < contours.size(); i++)
	{
		double area = contourArea(contours[i]);

		if (area > 10000)
		{
			double peri = arcLength(contours[i], true);

			approxPolyDP(contours[i], conPoly[i], 0.02*peri, true);
             //获取矩形四个角点
			srcPts = { conPoly[i][0],conPoly[i][1],conPoly[i][2],conPoly[i][3] };

		}

	}

3.将矩形角点排序

由于我们之前使用的approxPolyDP获取的角点是无序的,所以我们得确定各角点所在的位置。在这里我使用的算法是根据其角点所在图像位置特征确定左上、左下、右下、右上四个点。

	int width = src.cols / 2;
	int height = src.rows / 2;
	int T_L, T_R, B_R, B_L;

	for (int i = 0; i < srcPts.size(); i++)
	{
		if (srcPts[i].x < width && srcPts[i].y < height)
		{
			T_L = i;
		}
		if (srcPts[i].x > width && srcPts[i].y < height)
		{
			T_R = i;
		}
		if (srcPts[i].x > width && srcPts[i].y > height)
		{
			B_R = i;
		}
		if (srcPts[i].x < width && srcPts[i].y > height)
		{
			B_L = i;
		}

	}

如图所示。至此已经完成了矩形四个角点的定位。接下来就可以使用透视变换进行图像矫正了。

三、透视矫正

在这里我们需要知道透视变换一个原理:

变换后,图像的长和宽应该变为:

长 = max(变换前左边长,变换前右边长)

宽 = max(变换前上边长,变换前下边长)

设变换后图像的左上角位置为原点位置。

	double LeftHeight = EuDis(srcPts[T_L], srcPts[B_L])
	double RightHeight = EuDis(srcPts[T_R], srcPts[B_R]);
	double MaxHeight = max(LeftHeight, RightHeight);

	double UpWidth = EuDis(srcPts[T_L], srcPts[T_R]);
	double DownWidth = EuDis(srcPts[B_L], srcPts[B_R]);
	double MaxWidth = max(UpWidth, DownWidth);

确定变换后的长宽之后,就可以使用getPerspectiveTransform、warpPerspective进行透视矫正了。

//这里使用的顺序是左上、右上、右下、左下顺时针顺序。SrcAffinePts、DstAffinePts要一一对应
	Point2f SrcAffinePts[4] = { Point2f(srcPts[T_L]),Point2f(srcPts[T_R]) ,Point2f(srcPts[B_R]) ,Point2f(srcPts[B_L]) };
	Point2f DstAffinePts[4] = { Point2f(0,0),Point2f(MaxWidth,0),Point2f(MaxWidth,MaxHeight),Point2f(0,MaxHeight) };

	Mat M = getPerspectiveTransform(SrcAffinePts, DstAffinePts);

	Mat DstImg;
	warpPerspective(src, DstImg, M, Point(MaxWidth, MaxHeight));

这就是进行透视矫正之后的效果。

四、源码

#include<iostream>
#include<opencv2/opencv.hpp>

using namespace std;
using namespace cv;

double EuDis(Point pt1, Point pt2)
{
	return sqrt((pt2.x - pt1.x)*(pt2.x - pt1.x) + (pt2.y - pt1.y)*(pt2.y - pt1.y));
}

int main()
{

	Mat src = imread("1.jpg");
	if (src.empty())
	{
		cout << "No Image!" << endl;
		system("pause");
		return -1;
	}

	Mat gray;
	cvtColor(src, gray, COLOR_BGR2GRAY);

	Mat gaussian;
	GaussianBlur(gray, gaussian, Size(3, 3), 0);

	Mat thresh;
	threshold(gaussian, thresh, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);

	Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
	Mat open;
	morphologyEx(thresh, open, MORPH_OPEN, kernel);

	Mat kernel1 = getStructuringElement(MORPH_RECT, Size(7, 7));
	Mat close;
	morphologyEx(open, close, MORPH_CLOSE, kernel1);

	vector<vector<Point>>contours;
	findContours(close, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);

	vector<vector<Point>>conPoly(contours.size());
	vector<Point>srcPts;

	for (int i = 0; i < contours.size(); i++)
	{
		double area = contourArea(contours[i]);

		if (area > 10000)
		{
			double peri = arcLength(contours[i], true);

			approxPolyDP(contours[i], conPoly[i], 0.02*peri, true);

			srcPts = { conPoly[i][0],conPoly[i][1],conPoly[i][2],conPoly[i][3] };

		}

	}

	int width = src.cols / 2;
	int height = src.rows / 2;
	int T_L, T_R, B_R, B_L;

	for (int i = 0; i < srcPts.size(); i++)
	{
		if (srcPts[i].x < width && srcPts[i].y < height)
		{
			T_L = i;
		}
		if (srcPts[i].x > width && srcPts[i].y < height)
		{
			T_R = i;
		}
		if (srcPts[i].x > width && srcPts[i].y > height)
		{
			B_R = i;
		}
		if (srcPts[i].x < width && srcPts[i].y > height)
		{
			B_L = i;
		}

	}

	//circle(src, srcPts[T_L], 10, Scalar(0, 0, 255), -1);
	//circle(src, srcPts[T_R], 10, Scalar(0, 255, 255), -1);
	//circle(src, srcPts[B_R], 10, Scalar(255, 0, 0), -1);
	//circle(src, srcPts[B_L], 10, Scalar(0, 255, 0), -1);

	/*
	变换后,图像的长和宽应该变为:
	长 = max(变换前左边长,变换前右边长)
	宽 = max(变换前上边长,变换前下边长)
	设变换后图像的左上角位置为原点位置。
	*/

	double LeftHeight = EuDis(srcPts[T_L], srcPts[B_L]);
	double RightHeight = EuDis(srcPts[T_R], srcPts[B_R]);
	double MaxHeight = max(LeftHeight, RightHeight);

	double UpWidth = EuDis(srcPts[T_L], srcPts[T_R]);
	double DownWidth = EuDis(srcPts[B_L], srcPts[B_R]);
	double MaxWidth = max(UpWidth, DownWidth);

	Point2f SrcAffinePts[4] = { Point2f(srcPts[T_L]),Point2f(srcPts[T_R]) ,Point2f(srcPts[B_R]) ,Point2f(srcPts[B_L]) };
	Point2f DstAffinePts[4] = { Point2f(0,0),Point2f(MaxWidth,0),Point2f(MaxWidth,MaxHeight),Point2f(0,MaxHeight) };

	Mat M = getPerspectiveTransform(SrcAffinePts, DstAffinePts);

	Mat DstImg;
	warpPerspective(src, DstImg, M, Point(MaxWidth, MaxHeight));
	//imshow("Dst", DstImg);

	imshow("src", src);
	waitKey(0);
	destroyAllWindows();

	system("pause");
	return 0;
}

总结

本文使用OpenCV C++ 进行图像透视矫正,关键步骤有以下几点。

1、图像预处理,获取二值图像。

2、将二值图像进行轮廓提取,定位矩形四个角点,并确定其位置。

3、确定图像变换后的长、宽。并将SrcAffinePts、DstAffinePts一一对应之后进行透视变换。

到此这篇关于C++ OpenCV实战之图像透视矫正的文章就介绍到这了,更多相关C++ OpenCV图像透视矫正内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++ OpenCV实现图像双三次插值算法详解

    目录 前言 一.图像双三次插值算法原理 二.C++ OpenCV代码 1.计算权重矩阵 2.遍历插值 3. 测试及结果 前言 近期在学习一些传统的图像处理算法,比如传统的图像插值算法等.传统的图像插值算法包括邻近插值法.双线性插值法和双三次插值法,其中邻近插值法和双线性插值法在网上都有很详细的介绍以及用c++编写的代码.但是,网上关于双三次插值法的原理介绍虽然很多,也有对应的代码,但是大多都不是很详细.因此基于自己对原理的理解,自己编写了图像双三次插值算法的c++ opencv代码,在这里记录一

  • C++ OpenCV制作哈哈镜图像效果

    目录 前言 一.凸透镜 1.功能源码 2.效果显示 二.凹透镜 1.功能源码 2.效果显示 三.源码 前言 本文将使用OpenCV C++ 制作哈哈镜图像.其实原理很简单,就是让图像像素扭曲,将像素重新进行映射. 一.凸透镜 制作凸透镜效果(将图像放大).根据网上查找的变换公式: 图像放大:凸透镜 x = (dx / 2)*(sqrt(pow(dx, 2) + pow(dy, 2)) / r) + cx; y = (dy / 2)*(sqrt(pow(dx, 2) + pow(dy, 2)) /

  • C++ OpenCV实现图像修复功能

    目录 前言 一.OpenCV inpaint 二.源码 三.效果显示 前言 本文将使用OpenCV C++ 对有瑕疵的图像进行修复.OpenCV 提供了inpaint API可进行图像修复. 一.OpenCV inpaint 原图如图所示.本案例的需求是希望能够将图像上的红线给消除.OpenCV 提供的inpaint API能够实现这个效果. void inpaint( InputArray src, 原图 InputArray inpaintMask, 二进制掩模,指示要修复的像素 Outpu

  • 深入探讨opencv图像矫正算法实战

    摘要 在机器视觉中,对于图像的处理有时候因为放置的原因导致ROI区域倾斜,这个时候我们会想办法把它纠正为正确的角度视角来,方便下一步的布局分析与文字识别,这个时候通过透视变换就可以取得比较好的裁剪效果. 本次实战,对于图像的矫正使用了两种矫正思路: 针对边缘比较明显的图像,使用基于轮廓提取的矫正算法. 针对边缘不明显,但是排列整齐的文本图像,使用了基于霍夫直线探测的矫正算法. 基于轮廓提取的矫正算法 整体思路: 图片灰度化,二值化 检测轮廓,并筛选出目标轮廓(通过横纵比或面积去除干扰轮廓) 获取

  • C++ OpenCV实战之图像全景拼接

    目录 前言 一.OpenCV Stitcher 1.功能源码 2.效果 二.图像全景拼接 1.特征检测 2.计算单应性矩阵 3.透视变换 4.图像拼接 5.功能源码 6.效果 三.源码 总结 前言 本文将使用OpenCV C++ 进行图像全景拼接.目前使用OpenCV对两幅图像进行拼接大致可以分为两类. 一.使用OpenCV内置API Stitcher 进行拼接. 二.使用特征检测算法匹配两幅图中相似的点.计算变换矩阵.最后对其进行透视变换就可以了. 一.OpenCV Stitcher imag

  • 基于Opencv的图像卡通化实现代码

    OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法. 本文给大家介绍基于Opencv的图像卡通化,主要工具是高斯滤波器.细节增强滤波器.双边滤波.拉普拉斯滤波器. 铅笔素描

  • C++ OpenCV实战之图像透视矫正

    目录 前言 一.图像预处理 二.轮廓提取 1.提取最外轮廓 2.提取矩形四个角点 3.将矩形角点排序 三.透视矫正 四.源码 前言 本文将使用OpenCV C++ 进行图像透视矫正. 一.图像预处理 原图如图所示.首先进行图像预处理.将图像进行灰度.滤波.二值化.形态学等操作,目的是为了下面的轮廓提取.在这里我还使用了形态学开.闭操作,目的是使整个二值图像连在一起.大家在做图像预处理时,可以根据图像特征自行处理. Mat gray; cvtColor(src, gray, COLOR_BGR2G

  • 使用python opencv对畸变图像进行矫正的实现

    代码: __Author__ = "Shliang" __Email__ = "shliang0603@gmail.com" import os import cv2 import numpy as np from tqdm import tqdm def undistort(frame): fx = 685.646752 cx = 649.107905 fy = 676.658033 cy = 338.054431 k1, k2, p1, p2, k3 = -0.

  • C++ OpenCV实战之制作九宫格图像

    目录 前言 一.九宫格图像 二.源码 三.效果显示 总结 前言 本文将使用OpenCV C++ 制作九宫格图像.其实原理很简单,就是将一张图像均等分成九份.然后将这九个小块按一定间隔(九宫格效果)拷贝到新画布上就可以啦. 一.九宫格图像 原图如图所示.本案例的需求是希望将图像均等分成九份,制作九宫格图像.首先得将原图均等分成九份. 如图所示.将原图均等分成九份,然后将这每一个小方块按照一定的间隔(九宫格效果)拷贝到新图像就可以了.具体算法思想请看源码注释. 二.源码 #include<iostr

  • OpenCV 图像拼接和图像融合的实现

    目录 基于SURF的图像拼接 1.特征点提取和匹配 2.图像配准 3. 图像拷贝 4.图像融合(去裂缝处理) 基于ORB的图像拼接 opencv自带的拼接算法stitch 1.opencv stitch选择的特征检测方式 2.opencv stitch获取匹配点的方式 图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要. 再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办

  • Python+Opencv实战之人脸追踪详解

    目录 前言 人脸追踪技术简介 使用基于 dlib DCF 的跟踪器进行人脸跟踪 使用基于 dlib DCF 的跟踪器进行对象跟踪 小结 前言 人脸处理是人工智能中的一个热门话题,人脸处理可以使用计算机视觉算法从人脸中自动提取大量信息,例如身份.意图和情感:而目标跟踪试图估计目标在整个视频序列中的轨迹,其中只有目标的初始位置是已知的,将这两者进行结合将产生许多有趣的应用.由于外观变化.遮挡.快速运动.运动模糊和比例变化等多种因素,人脸追踪非常具有挑战性. 人脸追踪技术简介 基于判别相关滤波器 (d

  • Python OpenCV实战之与机器学习的碰撞

    目录 0. 前言 1. 机器学习简介 1.1 监督学习 1.2 无监督学习 1.3 半监督学习 2. K均值 (K-Means) 聚类 2.1 K-Means 聚类示例 3. K最近邻 3.1 K最近邻示例 4. 支持向量机 4.1 支持向量机示例 小结 0. 前言 机器学习是人工智能的子集,它为计算机以及其它具有计算能力的系统提供自动预测或决策的能力,诸如虚拟助理.车牌识别系统.智能推荐系统等机器学习应用程序给我们的日常生活带来了便捷的体验.机器学习的蓬勃发展,得益于以下三个关键因素:1) 海

  • Python+OpenCV实战之利用 K-Means 聚类进行色彩量化

    目录 前言 利用 K-Means 聚类进行色彩量化 完整代码 显示色彩量化后的色彩分布 前言 K-Means 聚类算法的目标是将 n 个样本划分(聚类)为 K 个簇,在博文<OpenCV与机器学习的碰撞>中,我们已经学习利用 OpenCV 提供了 cv2.kmeans() 函数实现 K-Means 聚类算法,该算法通过找到簇的中心并将输入样本分组到簇周围,同时通过简单的示例了解了 K-Means 算法的用法.在本文中,我们将学习如何利用 K-Means 聚类进行色彩量化,以减少图像中颜色数量.

  • Python OpenCV学习之图像滤波详解

    目录 背景 一.卷积相关概念 二.卷积实战 三.均值滤波 四.高斯滤波 五.中值滤波 六.双边滤波 七.Sobel算子 八.Scharr算子 九.拉普拉斯算子 十.Canny算法 背景 图像滤波的作用简单来说就是将一副图像通过滤波器得到另一幅图像:明确一个概念,滤波器又被称为卷积核,滤波的过程又被称为卷积:实际上深度学习就是训练许多适应任务的滤波器,本质上就是得到最佳的参数:当然在深度学习之前,也有一些常见的滤波器,本篇主要介绍这些常见的滤波器: 一.卷积相关概念 卷积核大小一般为奇数的原因:

  • OpenCV实战之基于Hu矩实现轮廓匹配

    目录 前言 一.查找轮廓 二.计算Hu矩 三.显示效果 四.源码 总结 前言 本文将使用OpenCV C++ 基于Hu矩进行轮廓匹配. 一.查找轮廓 原图 测试图 vector<vector<Point>>findContour(Mat Image) {     Mat gray;     cvtColor(Image, gray, COLOR_BGR2GRAY);     Mat thresh;     threshold(gray, thresh, 0, 255, THRESH

随机推荐