如何在Win10系统使用Python3连接Hive

由于数据存放在大数据平台的Hive数据仓库中,我需要在Win10系统上利用Python3连接Hive,然后读取数据,进行探索、分析和挖掘工作。

我通过网上查找资料和实际测试,把Win10系统Python3成功连接Hive配置总结如下。

第一步:安装依赖库

pip install bitarray
pip install bit_array
pip install thrift
pip install thriftpy
pip install pure_sasl
pip install --no-deps thrift-sasl==0.2.1

提示:若是无法安装,也可以点击如下网址,

https://www.lfd.uci.edu/~gohlke/pythonlibs/

选择合适库的whl下载,然后进行本地化安装。

第二步:安装impyla库

我采用本地化安装方式,先下载impyla库的whl,如下图:

再安装

pip install E:/Python_Library/impyla-0.16.2-py2.py3-none-any.whl

提示:上面的绝对路径根据你自己的情况而定

第三步:测试impyla库是否可以使用

from impala.dbapi import connect #用来连接Hive的函数
from impala.util import as_pandas #用来把数据结构转换为pandas

若是运行通过,表示利用impala连接Hive配置成功。

简单示例:

从Hive的一张表读取100条记录,放到pandas的DataFrame里面。

参考代码:

from impala.dbapi import connect #用来连接Hive的函数
from impala.util import as_pandas #用来把数据结构转换为pandas

conn = connect(host='my.host.com', port=21050)
cursor = conn.cursor()
cursor.execute('SELECT * FROM mytable LIMIT 100')
df = as_pandas(cursor)
cursor.close()

参考资料

https://github.com/cloudera/impyla

以上就是如何在Win10系统使用Python3连接Hive的详细内容,更多关于Python3连接Hive的资料请关注我们其它相关文章!

(0)

相关推荐

  • python 实现 hive中类似 lateral view explode的功能示例

    背景:加入现在有这样的数据,可能一条ocr代表两个label,并且label通过","分隔.我们想把数据转换成下面的. 原始数据: label ocr 日常行车服务,汽车资讯 去加油站,加完油后直接离开?最开心的可能是加油站的工作人员 社会民生 已致2死20伤 !景区突遭尘卷风袭击,孩子被卷上天!现场画面曝光 目标数据: label ocr 日常行车服务 去加油站,加完油后直接离开?最开心的可能是加油站的工作人员 汽车资讯 去加油站,加完油后直接离开?最开心的可能是加油站的工作人员 社

  • 在python中使用pyspark读写Hive数据操作

    1.读Hive表数据 pyspark读取hive数据非常简单,因为它有专门的接口来读取,完全不需要像hbase那样,需要做很多配置,pyspark提供的操作hive的接口,使得程序可以直接使用SQL语句从hive里面查询需要的数据,代码如下: from pyspark.sql import HiveContext,SparkSession _SPARK_HOST = "spark://spark-master:7077" _APP_NAME = "test" spa

  • 如何在Win10系统使用Python3连接Hive

    由于数据存放在大数据平台的Hive数据仓库中,我需要在Win10系统上利用Python3连接Hive,然后读取数据,进行探索.分析和挖掘工作. 我通过网上查找资料和实际测试,把Win10系统Python3成功连接Hive配置总结如下. 第一步:安装依赖库 pip install bitarray pip install bit_array pip install thrift pip install thriftpy pip install pure_sasl pip install --no-

  • python 操作hive pyhs2方式

    使用kerberos时 import pyhs2 class HiveClient: # 初始化 def __init__(self, db_host, user, password, database, port=10000, authMechanism="PLAIN", configuration=None): self.conn = pyhs2.connect(host=db_host, port=port, authMechanism=authMechanism, user=u

  • python导出hive数据表的schema实例代码

    本文研究的主要问题是python语言导出hive数据表的schema,分享了实现代码,具体如下. 为了避免运营提出无穷无尽的查询需求,我们决定将有查询价值的数据从mysql导入hive中,让他们使用HUE这个开源工具进行查询.想必他们对表结构不甚了解,还需要为之提供一个表结构说明,于是编写了一个脚本,从hive数据库中将每张表的字段即类型查询出来,代码如下: #coding=utf-8 import pyhs2 from xlwt import * hiveconn = pyhs2.connec

  • python3.6.5基于kerberos认证的hive和hdfs连接调用方式

    1. Kerberos是一种计算机网络授权协议,用来在非安全网络中,对个人通信以安全的手段进行身份认证.具体请查阅官网 2. 需要安装的包(基于centos) yum install libsasl2-dev yum install gcc-c++ python-devel.x86_64 cyrus-sasl-devel.x86_64 yum install python-devel yum install krb5-devel yum install python-krbV pip insta

  • 如何在python中写hive脚本

    这篇文章主要介绍了如何在python中写hive脚本,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.直接执行.sql脚本 import numpy as np import pandas as pd import lightgbm as lgb from pandas import DataFrame from sklearn.model_selection import train_test_split from io import St

  • 使用Python构造hive insert语句说明

    mysql可以使用nevicat导出insert语句用于数据构造,但是hive无法直接导出insert语句.我们可以先打印在hive命令行,然后使用脚本拼装成insert语句,进行数据构造. 手动copy到python脚本进行sql语句构造: def transformString(s): list_s = s.split('\t') print(len(list_s)) s_new = '' for item in list_s: s_new += '\"' + item.strip(' ')

  • Python pandas 列转行操作详解(类似hive中explode方法)

    最近在工作上用到Python的pandas库来处理excel文件,遇到列转行的问题.找了一番资料后成功了,记录一下. 1. 如果需要爆炸的只有一列: df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]}) df Out[1]: A B 0 1 [1, 2] 1 2 [1, 2] 如果要爆炸B这一列,可以直接用explode方法(前提是你的pandas的版本要高于或等于0.25) df.explode('B') A B 0 1 1 1 1 2 2 2 1 3

  • python处理数据,存进hive表的方法

    首先,公司的小组长给了我一个任务,把一个txt的文件中的部分内容,存进一个在hive中已有的表的相同结构的表中.所以我的流程主要有三个,首先,把数据处理成和hive中表相同结构的数据,然后仿照已有的hive中表的结构再创建一张新的数据表,最后把本地的txt文件上传到hive中新建的数据表中. 1:已有的数据表的结构和在hive表中的结构完全对不上,下面的图是原来hive中表的结构和小组长给我的txt中表的结构: 大家可以看出,我们原来的hive中表的字段一共有17个,而组长给我的表中的字段一共有

随机推荐