MongoDB索引的用法介绍

索引通常能够极大的提高查询的效率,如果没有索引,MongoDB在读取数据时必须扫描集合中的每个文件并选取那些符合查询条件的记录。

这种扫描全集合的查询效率是非常低的,特别在处理大量的数据时,查询可以要花费几十秒甚至几分钟,这对网站的性能是非常致命的。

索引是特殊的数据结构,索引存储在一个易于遍历读取的数据集合中,索引是对数据库表中一列或多列的值进行排序的一种结构

一、索引

1、createIndex() 方法

MongoDB使用 createIndex() 方法来创建索引。

注意在 3.0.0 版本前创建索引方法为 db.collection.ensureIndex(),之后的版本使用了 db.collection.createIndex() 方法,ensureIndex() 还能用,但只是 createIndex() 的别名。

语法

createIndex()方法基本语法格式如下所示:

db.collection.createIndex(keys, options)

语法中 Key 值为你要创建的索引字段,1 为指定按升序创建索引,如果你想按降序来创建索引指定为 -1 即可。

实例

db.col.createIndex({"title":1})

createIndex() 方法中你也可以设置使用多个字段创建索引(关系型数据库中称作复合索引)。

db.col.createIndex({"title":1,"description":-1})

createIndex() 接收可选参数,可选参数列表如下:

在后台创建索引:

db.values.createIndex({open: 1, close: 1}, {background: true})

通过在创建索引时加 background:true 的选项,让创建工作在后台执行

2、其他

1、查看集合索引

db.col.getIndexes()

2、查看集合索引大小

db.col.totalIndexSize()

3、删除集合所有索引

db.col.dropIndexes()

4、删除集合指定索引

db.col.dropIndex("索引名称")

二、全文索引

1、创建全文索引

考虑以下 posts 集合的文档数据,包含了文章内容(post_text)及标签(tags):

{
   "post_text": "enjoy the mongodb articles on Runoob",
   "tags": [
      "mongodb",
      "runoob"
   ]
}

我们可以对 post_text 字段建立全文索引,这样我们可以搜索文章内的内容:

db.posts.ensureIndex({post_text:"text"})

2、使用全文索引

现在我们已经对 post_text 建立了全文索引,我们可以搜索文章中的关键词 runoob:

db.posts.find({$text:{$search:"runoob"}})

以下命令返回了如下包含 runoob 关键词的文档数据:

{
   "_id" : ObjectId("53493d14d852429c10000002"),
   "post_text" : "enjoy the mongodb articles on Runoob",
   "tags" : [ "mongodb", "runoob" ]
}

使用全文索引可以提高搜索效率。

3、删除全文索引

删除已存在的全文索引,可以使用 find 命令查找索引名:

db.posts.getIndexes()

通过以上命令获取索引名,本例的索引名为post_text_text,执行以下命令来删除索引:

db.posts.dropIndex("post_text_text")

到此这篇关于MongoDB索引的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • MongoDB的索引

    1.简介 它就像是一本书的目录,如果没有它,我们就需要对整个书籍进行查找来获取需要的结果,即所说的全盘扫描: 而有了目录(索引)之后就可以通过它帮我们定位到目标所在的位置,快速的获取我们想要的结果. 2.演示 第一步,向用户集合users中插入100W条数据 var insertUsers = function() { var start = new Date().getTime(); for (var i = 1; i <= 1000000; i++) { db.users.insert({

  • MongoDB索引使用详解

    索引就像书的目录,如果查找某内容在没有目录的帮助下,只能全篇查找翻阅,这导致效率非常的低下:如果在借助目录情况下,就能很快的定位具体内容所在区域,效率会直线提高. 索引简介 首先打开命令行,输入mongo.默认mongodb会连接名为test的数据库. ➜ ~ mongo MongoDB shell version: 2.4.9 connecting to: test > show collections > 可以使用show collections/tables查看数据库为空. 然后在mon

  • MongoDB索引类型汇总分享

    目录 单字段索引 在单个字段上创建升序索引 在嵌入式字段上创建索引 在内嵌文档上创建索引 复合索引 多键索引 文本索引 2dsphere索引 创建测试数据 添加2dsphere索引 利用2dsphere索引查询多边形里的点 利用2dsphere索引查询球体上定义的圆内的点 2d索引 哈希索引 MongoDB 4.2官方支持索引类型如下: 单字段索引 复合索引 多键索引 文本索引 2dsphere索引 2d索引 geoHaystack索引 哈希索引 单字段索引 在单个字段上创建升序索引 hando

  • 关于对MongoDB索引的一些简单理解

    目录 索引简介 1.语法准备 2.数据准备: 3.索引 3.1 唯一索引 3.2 单键索引 3.3 多键索引 3.4 复合索引 3.5 交叉索引 3.6 部分索引 3.7覆盖索引 3.8 全文索引 4.索引限制 4.1 查询限制 4.2 范围限制 总结 索引简介 索引可以提升文档的查询速度,但建立索引的过程需要使用计算与存储资源,在已经建立索引的前提下,插入新的文档会引起索引顺序的重排. MongoDB 的索引是基于 B-tree 数据结构及对应算法形成的.树索引存储特定字段或字段集的值,按字段

  • MongoDB通配符索引的用法实例

    指南 MongoDB在4.2 版本推出了Wildcard Indexes,究竟什么是Wildcard Indexes以及Wildcard Indexes适合哪些场景本文结合官方文档以及实际测试进行简单概述. 1.通配符索引示例 因为MongoDB是dynamic schemas,所以应用是可以查询任何已知字段或者随机字段的. 假设(此假设案例摘自官方文档),集合colA的UserMetadata字段包含如下数据: { "userMetadata" : { "likes&quo

  • MongoDB教程之索引介绍

    一.索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧.下面是创建索引的命令:   复制代码 代码如下: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立:   复制代码 代码如下: > db.test.getIndexes() 删除索引的命令是:   复制代码 代码如下: > db.test.dropIndex({"username"

  • MongoDB中的定时索引示例详解

    MongoDB中存在一种索引,叫做TTL索引(time-to-live index,具有生命周期的索引),这种索引允许为每一个文档设置一个超时时间.一个文档达到预设置的老化程度后就会被删除. 数据到期对于某些类型的信息非常有用,例如机器生成的事件数据,日志和会话信息,这些信息只需要在数据库中保存有限的时间. 在createIndex中指定expireAfterSeconds选项就可以创建一个TTL索引: // 超时时间为24小时,默认是前台运行,可以通过background:true设置为后台模

  • 关于MongoDB索引管理-索引的创建、查看、删除操作详解

    索引是提高查询查询效率最有效的手段.索引是一种特殊的数据结构,索引以易于遍历的形式存储了数据的部分内容(如:一个特定的字段或一组字段值),索引会按一定规则对存储值进行排序,而且索引的存储位置在内存中,所在从索引中检索数据会非常快.如果没有索引,MongoDB必须扫描集合中的每一个文档,这种扫描的效率非常低,尤其是在数据量较大时. 1. 创建/重建索引 MongoDB全新创建索引使用ensureIndex()方法,对于已存在的索引可以使用reIndex()进行重建. 1.1 创建索引ensureI

  • mongoDB数据库索引快速入门指南

    目录 MongoDB 索引 1. 开始与准备数据 2. 创建索引前 3. 创建索引 createIndex 4. 创建索引后 6.唯一索引与符合索引 ①唯一索引 ②复合索引 MongoDB 索引 索引通常能够极大的提高查询的效率,如果没有索引,MongoDB在读取数据时必须扫描集合中的每个文件并选取那些符合查询条件的记录. 这种扫描全集合的查询效率是非常低的,特别在处理大量的数据时,查询可以要花费几十秒甚至几分钟,这对网站的性能是非常致命的. 索引是特殊的数据结构,索引存储在一个易于遍历读取的数

  • MongoDB如何正确中断正在创建的索引详解

    我们在使用 MongoDB 的时候,会出现需要给一个已经存在的大集合的某个字段增加索引的情况. 索引分为前台索引和后台索引,对应到 pymongo 中创建索引的代码: import pymongo handler = pymongo.MongoClient().yourdb.yourcol # 前台索引 handler.create_index('字段名') # 后台索引 handler.create_index('字段名', background=True) 如果集合里面有很多数据,并且你使用

随机推荐