一次SQL查询优化原理分析(900W+数据从17s到300ms)

目录
  • 前言
  • 证实
  • 参考资料:

有一张财务流水表,未分库分表,目前的数据量为9555695,分页查询使用到了limit,优化之前的查询耗时16 s 938 ms (execution: 16 s 831 ms, fetching: 107 ms),按照下文的方式调整SQL后,耗时347 ms (execution: 163 ms, fetching: 184 ms);

操作:查询条件放到子查询中,子查询只查主键ID,然后使用子查询中确定的主键关联查询其他的属性字段;

原理:1、减少回表操作;
2、可参考《阿里巴巴Java开发手册(泰山版)》第五章-MySQL数据库、(二)索引规约、第7条:
【推荐】利用延迟关联或者子查询优化超多分页场景。
说明: MySQL并不是挑过offeset行,而是取offset+N行,然后返回放弃前offset行,返回N行,那当offset特别大的时候,效率就非常的底下,要么控制返回的总页数,要么对超过特定阈值的页数进行SQL改写。
正例: 先快速定位需要获取的id段,然后再关联:
SELECT a.* FROM 表1 a,(select id from 表1 where 条件 LIMIT 100000,20) b where a.id = b.id;

-- 优化前SQL
SELECT  各种字段
FROM `table_name`
WHERE 各种条件
LIMIT 0,10;
-- 优化后SQL
SELECT  各种字段
FROM `table_name` main_tale
RIGHT JOIN
(
SELECT  子查询只查主键
FROM `table_name`
WHERE 各种条件
LIMIT 0,10;
) temp_table ON temp_table.主键 = main_table.主键

前言

首先说明一下MySQL的版本:

mysql> select version();
+-----------+
| version() |
+-----------+
| 5.7.17    |
+-----------+
1 row in set (0.00 sec)

表结构:

mysql> desc test;
+--------+---------------------+------+-----+---------+----------------+
| Field  | Type                | Null | Key | Default | Extra          |
+--------+---------------------+------+-----+---------+----------------+
| id     | bigint(20) unsigned | NO   | PRI | NULL    | auto_increment |
| val    | int(10) unsigned    | NO   | MUL | 0       |                |
| source | int(10) unsigned    | NO   |     | 0       |                |
+--------+---------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

id为自增主键,val为非唯一索引。

灌入大量数据,共500万:

mysql> select count(*) from test;
+----------+
| count(*) |
+----------+
|  5242882 |
+----------+
1 row in set (4.25 sec)

我们知道,当limit offset rows中的offset很大时,会出现效率问题:

mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id      | val | source |
+---------+-----+--------+
| 3327622 |   4 |      4 |
| 3327632 |   4 |      4 |
| 3327642 |   4 |      4 |
| 3327652 |   4 |      4 |
| 3327662 |   4 |      4 |
+---------+-----+--------+
5 rows in set (15.98 sec)

为了达到相同的目的,我们一般会改写成如下语句:

mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id      | val | source | id      |
+---------+-----+--------+---------+
| 3327622 |   4 |      4 | 3327622 |
| 3327632 |   4 |      4 | 3327632 |
| 3327642 |   4 |      4 | 3327642 |
| 3327652 |   4 |      4 | 3327652 |
| 3327662 |   4 |      4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.38 sec)

时间相差很明显。

为什么会出现上面的结果?我们看一下select * from test where val=4 limit 300000,5;的查询过程:

查询到索引叶子节点数据。
根据叶子节点上的主键值去聚簇索引上查询需要的全部字段值。

类似于下面这张图:

像上面这样,需要查询300005次索引节点,查询300005次聚簇索引的数据,最后再将结果过滤掉前300000条,取出最后5条。MySQL耗费了大量随机I/O在查询聚簇索引的数据上,而有300000次随机I/O查询到的数据是不会出现在结果集当中的。

肯定会有人问:既然一开始是利用索引的,为什么不先沿着索引叶子节点查询到最后需要的5个节点,然后再去聚簇索引中查询实际数据。这样只需要5次随机I/O,类似于下面图片的过程:

其实我也想问这个问题。

证实

下面我们实际操作一下来证实上述的推论:

为了证实select * from test where val=4 limit 300000,5是扫描300005个索引节点和300005个聚簇索引上的数据节点,我们需要知道MySQL有没有办法统计在一个sql中通过索引节点查询数据节点的次数。我先试了Handler_read_*系列,很遗憾没有一个变量能满足条件。

我只能通过间接的方式来证实:

InnoDB中有buffer pool。里面存有最近访问过的数据页,包括数据页和索引页。所以我们需要运行两个sql,来比较buffer pool中的数据页的数量。预测结果是运行select * from test a inner join (select id from test where val=4 limit 300000,5); 之后,buffer pool中的数据页的数量远远少于select * from test where val=4 limit 300000,5;对应的数量,因为前一个sql只访问5次数据页,而后一个sql访问300005次数据页。

select * from test where val=4 limit 300000,5
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;Empty set (0.04 sec)

可以看出,目前buffer pool中没有关于test表的数据页。

mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id      | val | source |
+---------+-----+--------+|
3327622 |   4 |      4 |
| 3327632 |   4 |      4 |
| 3327642 |   4 |      4 |
| 3327652 |   4 |      4 |
| 3327662 |   4 |      4 |
+---------+-----+--------+
5 rows in set (26.19 sec)

mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY    |     4098 |
| val        |      208 |
+------------+----------+2 rows in set (0.04 sec)

可以看出,此时buffer pool中关于test表有4098个数据页,208个索引页。

select * from test a inner join (select id from test where val=4 limit 300000,5) ;为了防止上次试验的影响,我们需要清空buffer pool,重启mysql。

mysqladmin shutdown
/usr/local/bin/mysqld_safe &
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;

Empty set (0.03 sec)

运行sql:

mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id      | val | source | id      |
+---------+-----+--------+---------+
| 3327622 |   4 |      4 | 3327622 |
| 3327632 |   4 |      4 | 3327632 |
| 3327642 |   4 |      4 | 3327642 |
| 3327652 |   4 |      4 | 3327652 |
| 3327662 |   4 |      4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.09 sec)

mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY    |        5 |
| val        |      390 |
+------------+----------+
2 rows in set (0.03 sec)

我们可以看明显的看出两者的差别:第一个sql加载了4098个数据页到buffer pool,而第二个sql只加载了5个数据页到buffer pool。符合我们的预测。也证实了为什么第一个sql会慢:读取大量的无用数据行(300000),最后却抛弃掉。
而且这会造成一个问题:加载了很多热点不是很高的数据页到buffer pool,会造成buffer pool的污染,占用buffer pool的空间。 遇到的问题

为了在每次重启时确保清空buffer pool,我们需要关闭innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup,这两个选项能够控制数据库关闭时dump出buffer pool中的数据和在数据库开启时载入在磁盘上备份buffer pool的数据。

参考资料:

1.https://explainextended.com/2009/10/23/mysql-order-by-limit-performance-late-row-lookups/

2.https://dev.mysql.com/doc/refman/5.7/en/innodb-information-schema-buffer-pool-tables.html

到此这篇关于一次SQL查询优化原理分析(900W+数据从17s到300ms)的文章就介绍到这了,更多相关SQL查询优化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • MySQL优化总结-查询总条数

    1.COUNT(*)和COUNT(COL) COUNT(*)通常是对主键进行索引扫描,而COUNT(COL)就不一定了,另外前者是统计表中的所有符合的纪录总数,而后者是计算表中所有符合的COL的纪录数.还有有区别的. 优化总结,对于MyISAM表来说: 1.任何情况下SELECT COUNT(*) FROM tablename是最优选择: 2.尽量减少SELECT COUNT(*) FROMtablename WHERE COL = 'value' 这种查询: 3.杜绝SELECT COUNT(

  • 浅谈MySQL中优化sql语句查询常用的30种方法

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描. 3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: select id from

  • MySQL优化之使用连接(join)代替子查询

    使用连接(JOIN)来代替子查询(Sub-Queries) MySQL从4.1开始支持SQL的子查询.这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中.例如,我们要将客户基本信息表中没有任何订单的客户删除掉,就可以利用子查询先从销售信息表中将所有发出订单的客户ID取出来,然后将结果传递给主查询,如下所示: DELETE FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FR

  • MySQL查询优化之explain的深入解析

    在分析查询性能时,考虑EXPLAIN关键字同样很管用.EXPLAIN关键字一般放在SELECT查询语句的前面,用于描述MySQL如何执行查询操作.以及MySQL成功返回结果集需要执行的行数.explain 可以帮助我们分析 select 语句,让我们知道查询效率低下的原因,从而改进我们查询,让查询优化器能够更好的工作. 一.MySQL 查询优化器是如何工作的MySQL 查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行.最终目标是提交 SEL

  • MySQL查询优化:连接查询排序limit(join、order by、limit语句)介绍

    不知道有没有人碰到过这样恶心的问题:两张表连接查询并limit,SQL效率很高,但是加上order by以后,语句的执行时间变的巨长,效率巨低. 情况是这么一个情况:现在有两张表,team表和people表,每个people属于一个team,people中有个字段team_id. 下面给出建表语句: 复制代码 代码如下: create table t_team ( id int primary key, tname varchar(100) ); create table t_people (

  • 一次SQL查询优化原理分析(900W+数据从17s到300ms)

    目录 前言 证实 参考资料: 有一张财务流水表,未分库分表,目前的数据量为9555695,分页查询使用到了limit,优化之前的查询耗时16 s 938 ms (execution: 16 s 831 ms, fetching: 107 ms),按照下文的方式调整SQL后,耗时347 ms (execution: 163 ms, fetching: 184 ms): 操作:查询条件放到子查询中,子查询只查主键ID,然后使用子查询中确定的主键关联查询其他的属性字段: 原理:1.减少回表操作:2.可

  • Mybatis防止sql注入原理分析

    目录 Mybatis防止sql注入原理 底层实现原理 Mybatis解决sql注入问题 小结一下 Mybatis防止sql注入原理 SQL 注入是一种代码注入技术,用于攻击数据驱动的应用,恶意的SQL 语句被插入到执行的实体字段中(例如,为了转储数据库内容给攻击者).[摘自] SQL注入 - 维基百科SQL注入,大家都不陌生,是一种常见的攻击方式.攻击者在界面的表单信息或URL上输入一些奇怪的SQL片段(例如"或'1'='1'"这样的语句),有可能入侵参数检验不足的应用程序.所以,在我

  • 30个mysql千万级大数据SQL查询优化技巧详解

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用

  • PHP防止sql注入小技巧之sql预处理原理与实现方法分析

    本文实例讲述了PHP防止sql注入小技巧之sql预处理原理与实现方法.分享给大家供大家参考,具体如下: 我们可以把sql预处理看作是想要运行的 SQL 的一种编译过的模板,它可以使用变量参数进行定制. 我们来看下它有什么好处: 预处理语句大大减少了分析时间,只做了一次查询(虽然语句多次执行). 绑定参数减少了服务器带宽,你只需要发送查询的参数,而不是整个语句. 预处理语句针对SQL注入是非常有用的,因为参数值发送后使用不同的协议,保证了数据的合法性. 这种预处理呢,可以通过两个方式,咱们这次要说

  • Web网络安全漏洞分析SQL注入原理详解

    目录 一.SQL注入的基础 1.1 介绍SQL注入 1.2 注入的原理 1.3 与MySQL注入相关的知识 MySQL查询语句 limit的用法 需要记住的几个函数 注释符 内联注释 一.SQL注入的基础 1.1 介绍SQL注入 SQL注入就是指Web应用程序对用户输入数据的合法性没有判断,前端传入后端的参数是攻击者可控的,并且参数带入数据库查询,攻击者可以通过构造不同的SQL语句来实现对数据库的任意操作. 下面以PHP语句为例. $query = "SELECT * FROM users WH

  • spring boot启动加载数据原理分析

    实际应用中,我们会有在项目服务启动的时候就去加载一些数据或做一些事情这样的需求. 为了解决这样的问题,spring Boot 为我们提供了一个方法,通过实现接口 CommandLineRunner 来实现. 创建实现接口 CommandLineRunner 的类,通过@Component注解,就可以实现启动时加载数据项.使用@Order 注解来定义执行顺序. IndexStartupRunner.Java类: import org.springframework.boot.CommandLine

  • go语言的sql包原理与用法分析

    本文实例讲述了go语言的sql包原理与用法.分享给大家供大家参考,具体如下: go的sql包是在pkg/database中,里面的两个包sql和sql/driver可以一起看.建议看这个两个包之前可以先看看sql文件夹下的doc.txt.这个文档说了几点比较重要的: 1 这两个包是真正Go风格的包. 2 这使用这两个包就不需要关于并发处理了,也不需要维护自己的数据库连接池了,一旦建立了一个连接,这个连接是可以在各个goroutine之间共用的. 3 sql/driver提供的是数据库的接口,具体

  • MySQL千万级大数据SQL查询优化知识点总结

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null 可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否

  • Mybatis-Plus的应用场景描述及注入SQL原理分析

    MyBatis-Plus(简称 MP)是一个 MyBatis 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发.提高效率而生. 愿景是成为 MyBatis 最好的搭档,就像 魂斗罗 中的 1P.2P,基友搭配,效率翻倍. 特性: 无侵入:只做增强不做改变,引入它不会对现有工程产生影响,如丝般顺滑 损耗小:启动即会自动注入基本 CURD,性能基本无损耗,直接面向对象操作 强大的 CRUD 操作:内置通用 Mapper.通用 Service,仅仅通过少量配置即可实现单表大部分 C

  • Mybatis-Plus注入SQL原理分析

    目录 前言 案例 测试 原理解析 前言 MyBatis-Plus 是一个 MyBatis 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发.提高效率而生. 那么 MyBatis-Plus 是怎么加强的呢?其实就是封装好了一些 crud 方法,开发人员不需要再写 SQL 了,间接调用方法就可以获取到封装好的 SQL 语句. 特性: 无侵入:只做增强不做改变,引入它不会对现有工程产生影响,如丝般顺滑 损耗小:启动即会自动注入基本 CURD,性能基本无损耗,直接面向对象操作 强大的

随机推荐