MySQL千万级大数据SQL查询优化知识点总结

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null 可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询:select id from t where num=0

3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用索引而进行全表扫描。

4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num=10 or num=20 可以这样查询:select id from t where num=10 union all select id from t where num=20

5.in 和 not in 也要慎用,否则会导致全表扫描,如:select id from t where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了:select id from t where num between 1 and 3

6.下面的查询也将导致全表扫描:select id from t where name like '%李%' 若要提高效率,可以考虑全文检索。

7.如果在 where 子句中使用参数,也会导致全表扫描。因为 SQL 只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:select id from t where num=@num 可以改为强制查询使用索引:select id from t with(index(索引名)) where num=@num

8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where num/2=100 应改为: select id from t where num=100*2。

9.应尽量避免在 where 子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:select id from t where substring(name,1,3)='abc' ,name 以 abc 开头的 id 应改为:select id from t where name like ‘abc%'。

10.不要在 where 子句中的 “=” 左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12.不要写一些没有意义的查询,如需要生成一个空表结构:select col1,col2 into #t from t where 1=0, 这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:create table #t(…)。

13.很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b),用下面的语句替换:select num from a where exists(select 1 from b where num=a.num)。

14.并不是所有索引对查询都有效,SQL 是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL 查询可能不会去利用索引,如一表中有字段 sex,male、female 几乎各一半,那么即使在 sex 上建了索引也对查询效率起不了作用。

15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数 最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18.尽可能的使用 varchar/nvarchar 代替 char/nchar,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19.任何地方都不要使用 select * from t,用具体的字段列表代替 “*”,不要返回用不到的任何字段。

20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21.避免频繁创建和删除临时表,以减少系统表资源的消耗。

22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先 create table,然后 insert。

24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table,然后 drop table,这样可以避免系统表的较长时间锁定。

25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON,在结束时设置 SET NOCOUNT OFF。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29.尽量避免大事务操作,提高系统并发能力。

30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

以上就是30个我们总结的优化查询技巧,感谢大家的学习和对我们的支持,大家如果还有任何补充可联系下方小编QQ。

(0)

相关推荐

  • 一步步教你MySQL查询优化分析教程

    前言 MySQL是关系性数据库中的一种,查询功能强,数据一致性高,数据安全性高,支持二级索引.但性能方面稍逊于非关系性数据库,特别是百万级别以上的数据,很容易出现查询慢的现象.这时候需要分析查询慢的原因,一般情况下是程序员sql写的烂,或者是没有键索引,或者是索引失效等原因导致的. 这时候MySQL 提供的 EXPLAIN 命令就尤其重要, 它可以对 SELECT 语句进行分析, 并输出 SELECT 执行的详细信息, 以供开发人员针对性优化. 而且就在查询语句前加上 Explain 就成: E

  • 通过MySQL慢查询优化MySQL性能的方法讲解

    随着访问量的上升,MySQL数据库的压力就越大,几乎大部分使用MySQL架构的web应用在数据库上都会出现性能问题,通过mysql慢查询日志跟踪有问题的查询非常有用,可以分析出当前程序里有很耗费资源的sql语句. 慢查询日志我们可以通过my.cnf文件设置开启,下面先来看一下相关参数的意义 log-slow-queries <slow_query_log_file> 存放slow query日志的文件.你必须保证mysql server进程mysqld_safe进程用户对该文件有w权限. lo

  • mysql慢查询优化之从理论和实践说明limit的优点

    很多时候, 我们预期查询的结果最多是1条记录数据, 那么这个时候, 最好用上limit 1,  当查到这条数据后, mysql会立即终止继续查询, 不进行更多的无用查询, 从而提升了效率. 我们来实际测试一下, 在一个拥有10万的mysql表中, 查找lily的分数(假设系统中只有1个lily, 而我们预期也只需要这条数据).为了显示出时间的差别, 我并不对表的name字段建索引. 先看看表结构: mysql> show create table tb_province; +----------

  • Mysql慢查询优化方法及优化原则

    1.日期大小的比较,传到xml中的日期格式要符合'yyyy-MM-dd',这样才能走索引,如:'yyyy'改为'yyyy-MM-dd','yyyy-MM'改为'yyyy-MM-dd'[这样MYSQL会转换为日期类型] 2.条件语句中无论是等于.还是大于小于,WHERE左侧的条件查询字段不要使用函数或表达式或数学运算 3.WHERE条件语句尝试着调整字段的顺序提升查询速度,如把索引字段放在最前面.把查询命中率高的字段置前等 4.保证优化SQL前后其查询结果是一致的 5.在查询的时候通过将EXPLA

  • mysql大数据查询优化经验分享(推荐)

    正儿八经mysql优化! mysql数据量少,优化没必要,数据量大,优化少不了,不优化一个查询10秒,优化得当,同样查询10毫秒. 这是多么痛的领悟! mysql优化,说程序员的话就是:索引优化和where条件优化. 实验环境:MacBook Pro MJLQ2CH/A,mysql5.7,数据量:212万+ ONE: select * from article INNER JOIN ( SELECT id FROM article WHERE length(content_url) > 0 an

  • 30个mysql千万级大数据SQL查询优化技巧详解

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用

  • MySQL千万级大数据SQL查询优化知识点总结

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null 可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否

  • MySql 快速插入千万级大数据的方法示例

    在数据分析领域,数据库是我们的好帮手.不仅可以接受我们的查询时间,还可以在这基础上做进一步分析.所以,我们必然要在数据库插入数据.在实际应用中,我们经常遇到千万级,甚至更大的数据量.如果没有一个快速的插入方法,则会事倍功半,花费大量的时间. 在参加阿里的天池大数据算法竞赛中(流行音乐趋势预测),我遇到了这样的问题,在没有优化数据库查询及插入之前,我花了不少冤枉时间,没有优化之前,1500万条数据,光插入操作就花费了不可思议的12个小时以上(使用最基本的逐条插入).这也促使我思考怎样优化数据库插入

  • Mysql大数据量查询优化思路详析

    目录 1. 千万级别日志查询的优化 2. 几百万黑名单库的查询优化 3. Mybatis批量插入处理问题 项目场景: Mysql大表查询优化,理论上千万级别以下的数据量Mysql单表查询性能处理都是可以的. 问题描述: 在我们线上环境中,出现了mysql几千万级别的日志查询.几百万级别的黑名单库查询分页查询及条件查询都慢的问题,针对Mysql表优化做了一些优化处理. 原因分析:首先说一下日志查询,在Mysql中如果索引加的比较合适,走索引情况下千万级别查询不会超过一秒,Mysql查询的速度和检索

  • Python批量删除mysql中千万级大量数据的脚本分享

    场景描述 线上mysql数据库里面有张表保存有每天的统计结果,每天有1千多万条,这是我们意想不到的,统计结果咋有这么多.运维找过来,磁盘占了200G,最后问了运营,可以只保留最近3天的,前面的数据,只能删了.删,怎么删? 因为这是线上数据库,里面存放有很多其它数据表,如果直接删除这张表的数据,肯定不行,可能会对其它表有影响.尝试每次只删除一天的数据,还是卡顿的厉害,没办法,写个Python脚本批量删除吧. 具体思路是: 每次只删除一天的数据: 删除一天的数据,每次删除50000条: 一天的数据删

  • MySQL 百万级分页优化(Mysql千万级快速分页)

    以下分享一点我的经验 一般刚开始学SQL的时候,会这样写 复制代码 代码如下: SELECT * FROM table ORDER BY id LIMIT 1000, 10; 但在数据达到百万级的时候,这样写会慢死 复制代码 代码如下: SELECT * FROM table ORDER BY id LIMIT 1000000, 10; 也许耗费几十秒 网上很多优化的方法是这样的 复制代码 代码如下: SELECT * FROM table WHERE id >= (SELECT id FROM

  • 千万级用户系统SQL调优实战分享

    用户日活百万级,注册用户千万级,而且若还没有进行分库分表,则该DB里的用户表可能就一张,单表上千万的用户数据. 某系统专门通过各种条件筛选大量用户,接着对那些用户去推送一些消息: 一些促销活动消息 让你办会员卡的消息 告诉你有一个特价商品的消息 通过一些条件筛选出大量用户,针对这些用户做推送,该过程较耗时-筛选用户过程. 用户日活百万级,注册用户千万级,而且若还没有进行分库分表,则该DB里的用户表可能就一张,单表上千万的用户数据. 对运营系统筛选用户的SQL: SELECT id, name 

  • 一次Mysql使用IN大数据量的优化记录

    mysql版本号是5.7.28,表A有390W条记录,使用InnoDB引擎,其中varchar类型字段mac已建立索引,索引方法为B-tree.B表仅有5000+条记录. 有一条SQL指令是这样写的: SELECT * FROM A WHERE mac IN("aa:aa:aa:aa:aa:aa","bb:bb:bb:bb:bb:b",...此外省略900+条) 通过查询出来的结果耗时294.428s.没错,将近5分钟. 使用EXPLAIN分析下: 访问类型type

  • 如何优化Mysql千万级快速分页

    看例子: 数 据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引.这是一个基本的新闻系统的简单模型.现在往里面填充数据,填充10万篇新闻. 最后collect 为 10万条记录,数据库表占用硬盘1.6G. OK ,看下面这条sql语句: select id,title from collect limit 1000,10; 很快:基本上0.01秒就OK

  • JS前端千万级弹幕数据循环优化示例

    目录 引言 1.如何删除数组中的元素 2.10000,000条消息如何优化? 场景 常规思路: 产生的问题 优化策略 代码实现 效果展示 小结 游标法代替splice 二分查找 完结 引言 最近做了直播相关的业务,然后对于大数据相关的优化做了一下复盘. 为了了解我是怎么做这个优化的,我们先从如何按照特定的条件删除一个数组说起. 1.如何删除数组中的元素 场景:有一个数组,需要删除满足条件的数组. 示例: const arr = [1,2,3,4,5,6,7,8] 删除小于5的元素,删除后的元素为

随机推荐