Pytorch中使用ImageFolder读取数据集时忽略特定文件

目录
  • 一、使用ImageFolder读取数据集时忽略特定文件
  • 二、ImageFolder只读取部分类别文件夹

一、使用ImageFolder读取数据集时忽略特定文件

如果事先知道需要忽略哪些文件,当然直接从数据集里删除就行了。但如果需要在程序运行时动态确认,或者筛选规则比较复杂,人工不好做,就需要让ImageFolder在读取时使用自定义的筛选规则。

ImageFolder有一个可选参数为is_valid_file,参数类型为可调用的函数,该函数传入一个str参数,返回一个bool值。当返回值为True时保留该文件,否则忽略。

例如,读取时想要忽略所有文件名带‘invalid’的文件,

代码如下:

import platform
from torchvision.datasets import ImageFolder

class Check(object):
    def __init__(self,
                 key_word: str):
        self.key_word = key_word
        self.separator = '\\' if platform.system() == 'Windows' else '/'

    def __call__(self, 
                 file_name: str) -> bool:
        folders = file_name.split(self.separator)
        return folders[-1].find(self.key_word) < 0

dataset = ImageFolder('./data', is_valid_file=Check('invalid'))

这里定义了一个实现了__call__方法的Check类,相比于直接定义函数的好处在于可以在构造函数里指定想要忽略的字符,并且能够根据操作系统的不同把文件目录分隔符给确定了。

更加复杂的功能可以自行修改代码逻辑实现,但是要注意如果某个类别的所有文件都被筛选掉了,ImageFolder会报FileNotFoundError错误。

如果想要忽略整个类别可以使用下面方法!!!

二、ImageFolder只读取部分类别文件夹

直接继承并且重写ImageFolder类的find_classes方法即可

from torchvision.datasets.folder import *
from typing import *

class FilterableImageFolder(ImageFolder):
    def __init__(
            self,
            root: str,
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
            loader: Callable[[str], Any] = default_loader,
            is_valid_file: Optional[Callable[[str], bool]] = None,
            valid_classes: List = None
    ):
        self.valid_classes = valid_classes
        super(FilterableImageFolder, self).__init__(root, transform, target_transform, loader, is_valid_file)

    def find_classes(self, directory: str) -> Tuple[List[str], Dict[str, int]]:
        classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
        #增加了这下面这句
        classes = [valid_class for valid_class in classes if valid_class in self.valid_classes]
        if not classes:
            raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")

        class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
        return classes, class_to_idx

使用时,例如有mousecatdog三个类别的数据集文件夹,只想读取catdog

代码如下:

dataset = FilterableImageFolder('./data', valid_classes=['cat', 'dog'])

到此这篇关于Pytorch中使用ImageFolder读取数据集时忽略特定文件的文章就介绍到这了,更多相关ImageFolder读取数据集内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch ImageFolder的覆写实例

    在为数据分类训练分类器的时候,比如猫狗分类时,我们经常会使用pytorch的ImageFolder: CLASS torchvision.datasets.ImageFolder(root, transform=None, target_transform=None, loader=<function default_loader>, is_valid_file=None) 使用可见pytorch torchvision.ImageFolder的用法介绍 这里想实现的是如果想要覆写该函数,即能

  • pytorch torchvision.ImageFolder的用法介绍

    torchvision.datasets Datasets 拥有以下API: __getitem__ __len__ Datasets都是 torch.utils.data.Dataset的子类,所以,他们也可以通过torch.utils.data.DataLoader使用多线程(python的多进程). 举例说明: torch.utils.data.DataLoader(coco_cap, batch_size=args.batchSize, shuffle=True, num_workers

  • pytorch之ImageFolder使用详解

    pytorch之ImageFolder torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet.COCO.MNIST.LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用.在这里介绍一个会经常使用到的Dataset--ImageFolder. ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下: ImageFolder(root, tra

  • Pytorch中使用ImageFolder读取数据集时忽略特定文件

    目录 一.使用ImageFolder读取数据集时忽略特定文件 二.ImageFolder只读取部分类别文件夹 一.使用ImageFolder读取数据集时忽略特定文件 如果事先知道需要忽略哪些文件,当然直接从数据集里删除就行了.但如果需要在程序运行时动态确认,或者筛选规则比较复杂,人工不好做,就需要让ImageFolder在读取时使用自定义的筛选规则. ImageFolder有一个可选参数为is_valid_file,参数类型为可调用的函数,该函数传入一个str参数,返回一个bool值.当返回值为

  • Python实现删除时保留特定文件夹和文件的示例

    实现功能:删除当前目录下,除保留目录和文件外的所有文件和目录 #!bin/env python import os import os.path import shutil def DeleteFiles(path, remainDirsList, filesList): dirsList = [] dirsList = os.listdir(path) for f in dirsList: if f not in remainDirsList: filePath = os.path.join(

  • 用vbs实现在启动 Windows 资源管理器时打开特定文件夹

    my-script.vbs "c:\scripts" 在文件夹路径的两端必须加双引号吗?本例中不需要.但是,如果路径中有空格,则必须加双引号.以下命令行将不起作用: my-script.vbs c:\documents and settings\kmyer 只要是向脚本传递包含空格的参数,就必须将整个参数括在双引号内(否则无需如此).换句话说: my-script.vbs "c:\documents and settings\kmyer" 这就是命令解释程序的工作方

  • 聊聊基于pytorch实现Resnet对本地数据集的训练问题

    目录 1.dataset.py(先看代码的总体流程再看介绍) 2.network.py 3.train.py 4.结果与总结 本文是使用pycharm下的pytorch框架编写一个训练本地数据集的Resnet深度学习模型,其一共有两百行代码左右,分成mian.py.network.py.dataset.py以及train.py文件,功能是对本地的数据集进行分类.本文介绍逻辑是总分形式,即首先对总流程进行一个概括,然后分别介绍每个流程中的实现过程(代码+流程图+文字的介绍). 对于整个项目的流程首

  • 使用pytorch读取数据集

    目录 pytorch读取数据集 第一种 第二种 第三种 pytorch学习记录 注意事项 pytorch读取数据集 使用pytorch读取数据集一般有三种情况 第一种 读取官方给的数据集,例如Imagenet,CIFAR10,MNIST等 这些库调用torchvision.datasets.XXXX()即可,例如想要读取MNIST数据集 import torch import torch.nn as nn import torch.utils.data as Data import torchv

  • pytorch中如何使用DataLoader对数据集进行批处理的方法

    最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络. pytorch中有很方便的dataloader函数来方便我们进行批处理,做了简单的例子,过程很简单,就像把大象装进冰箱里一共需要几步? 第一步:打开冰箱门. 我们要创建torch能够识别的数据集类型(pytorch中也有很多现成的数据集类型,以后再说). 首先我们建立两个向量X和Y,一个作为输入的数据,一个作为正确的结果: 随后我们需要把X和Y组成一个完整的数据集,

  • 基于Tensorflow读取MNIST数据集时网络超时的解决方式

    最近在学习TensorFlow,比较烦人的是使用tensorflow.examples.tutorials.mnist.input_data读取数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/temp/mnist_data/') X = mnist.test.images.reshape(-1, n_steps, n_inputs) y = mnis

  • pytorch dataset实战案例之读取数据集的代码

    目录 概述 项目结构与代码 总结 参考资料 概述 最近在跑一篇图像修复论文的代码,配置好环境之后开始运行,发现数据一直加载不进去.害,还是得看人家代码咋写的,一句一句看逻辑,准能找出问题.通读dataset后,发现了问题所在,终于成功加载了数据集. 项目结构与代码 项目结构 主要的目的就是从数据集中读取到彩色图像和掩码图像.代码代码中涉及到torch.transforms.合并路径等知识点,我在代码中都进行了详细的注释,路径要对照着项目结构,如果自己用的话要根据项目结构去将相对路径改过来.dat

  • 使用pytorch加载并读取COCO数据集的详细操作

    目录 环境配置 基础知识:元祖.字典.数组 利用PyTorch读取COCO数据集 利用PyTorch读取自己制作的数据集 如何使用pytorch加载并读取COCO数据集 环境配置基础知识:元祖.字典.数组利用PyTorch读取COCO数据集利用PyTorch读取自己制作的数据集 环境配置 看pytorch入门教程 基础知识:元祖.字典.数组 # 元祖 a = (1, 2) # 字典 b = {'username': 'peipeiwang', 'code': '111'} # 数组 c = [1

  • pytorch中DataLoader()过程中遇到的一些问题

    如下所示: RuntimeError: stack expects each tensor to be equal size, but got [3, 60, 32] at entry 0 and [3, 54, 32] at entry 2 train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.Resize((224)) ### 原因是 transforms.Resize() 的参数设置问

随机推荐