利用Python过滤相似文本的简单方法示例

问题

假设你在存档中有成千上万的文档,其中许多是彼此重复的,即使文档的内容相同,标题不同。 现在想象一下,现在老板要求你通过删除不必要的重复文档来释放一些空间。

问题是:如何过滤标题足够相似的文本,以使内容可能相同? 接下来,如何实现此目标,以便在完成操作时不会删除过多的文档,而保留一组唯一的文档? 让我们用一些代码使它更清楚:

titles = [
 "End of Year Review 2020",
 "2020 End of Year",
 "January Sales Projections",
 "Accounts 2017-2018",
 "Jan Sales Predictions"
]

# Desired output
filtered_titles = [
 "End of Year Review 2020",
 "January Sales Projections",
 "Accounts 2017-2018",
]

根据以上的问题,本文适合那些希望快速而实用地概述如何解决这样的问题并广泛了解他们同时在做什么的人!

接下来,我将介绍我为解决这个问题所采取的不同步骤。下面是控制流的概要:

预处理所有标题文本

生成所有标题成对

测试所有对的相似性

如果一对文本未能通过相似性测试,则删除其中一个文本并创建一个新的文本列表

继续测试这个新的相似的文本列表,直到没有类似的文本留下

用Python表示,这可以很好地映射到递归函数上!

代码

下面是Python中实现此功能的两个函数。

import spacy
from itertools import combinations

# Set globals
nlp = spacy.load("en_core_web_md")

def pre_process(titles):
 """
 Pre-processes titles by removing stopwords and lemmatizing text.
 :param titles: list of strings, contains target titles,.
 :return: preprocessed_title_docs, list containing pre-processed titles.
 """

 # Preprocess all the titles
 title_docs = [nlp(x) for x in titles]
 preprocessed_title_docs = []
 lemmatized_tokens = []
 for title_doc in title_docs:
  for token in title_doc:
   if not token.is_stop:
    lemmatized_tokens.append(token.lemma_)
  preprocessed_title_docs.append(" ".join(lemmatized_tokens))
  del lemmatized_tokens[
   :
   ] # empty the lemmatized tokens list as the code moves onto a new title

 return preprocessed_title_docs

def similarity_filter(titles):
 """
 Recursively check if titles pass a similarity filter.
 :param titles: list of strings, contains titles.
 If the function finds titles that fail the similarity test, the above param will be the function output.
 :return: this method upon itself unless there are no similar titles; in that case the feed that was passed
 in is returned.
 """

 # Preprocess titles
 preprocessed_title_docs = pre_process(titles)

 # Remove similar titles
 all_summary_pairs = list(combinations(preprocessed_title_docs, 2))
 similar_titles = []
 for pair in all_summary_pairs:
  title1 = nlp(pair[0])
  title2 = nlp(pair[1])
  similarity = title1.similarity(title2)
  if similarity > 0.8:
   similar_titles.append(pair)

 titles_to_remove = []
 for a_title in similar_titles:
  # Get the index of the first title in the pair
  index_for_removal = preprocessed_title_docs.index(a_title[0])
  titles_to_remove.append(index_for_removal)

 # Get indices of similar titles and remove them
 similar_title_counts = set(titles_to_remove)
 similar_titles = [
  x[1] for x in enumerate(titles) if x[0] in similar_title_counts
 ]

 # Exit the recursion if there are no longer any similar titles
 if len(similar_title_counts) == 0:
  return titles

 # Continue the recursion if there are still titles to remove
 else:
  # Remove similar titles from the next input
  for title in similar_titles:
   idx = titles.index(title)
   titles.pop(idx)

  return similarity_filter(titles)

if __name__ == "__main__":
 your_title_list = ['title1', 'title2']
 similarty_filter(your_title_list)

第一个是预处理标题文本的简单函数;它删除像' the ', ' a ', ' and '这样的停止词,并只返回标题中单词的引理。

如果你在这个函数中输入“End of Year Review 2020”,你会得到“end year review 2020”作为输出;如果你输入“January Sales Projections”,你会得到“january sale projection”。

它主要使用了python中非常容易使用的spacy库.

第二个函数(第30行)为所有标题创建配对,然后确定它们是否通过了余弦相似度测试。如果它没有找到任何相似的标题,那么它将输出一个不相似标题的列表。但如果它确实找到了相似的标题,在删除没有通过相似度测试的配对后,它会将这些过滤后的标题再次发送给它自己,并检查是否还有相似的标题。

这就是为什么它是递归的!简单明了,这意味着函数将继续检查输出,以真正确保在返回“最终”输出之前没有类似的标题。

什么是余弦相似度?

但简而言之,这就是spacy在幕后做的事情……

首先,还记得那些预处理过的工作吗?首先,spacy把我们输入的单词变成了一个数字矩阵。

一旦它完成了,你就可以把这些数字变成向量,也就是说你可以把它们画在图上。

一旦你这样做了,计算两条直线夹角的余弦就能让你知道它们是否指向相同的方向。

所以,在上图中,想象一下,A线代表“闪亮的橙色水果”,B线代表“闪亮的红苹果是一种水果”。

在这种情况下,行A和行B都对应于空格为这两个句子创建的数字矩阵。这两条线之间的角度——在上面的图表中由希腊字母theta表示——是非常有用的!你可以计算余弦来判断这两条线是否指向同一个方向。

这听起来似乎是显而易见的,难以计算,但关键是,这种方法为我们提供了一种自动化整个过程的方法。

总结

回顾一下,我已经解释了递归python函数如何使用余弦相似性和spacy自然语言处理库来接受相似文本的输入,然后返回彼此不太相似的文本。

可能有很多这样的用例……类似于我在本文开头提到的归档用例,你可以使用这种方法在数据集中过滤具有惟一歌词的歌曲,甚至过滤具有惟一内容类型的社交媒体帖子。

到此这篇关于利用Python过滤相似文本的简单方法的文章就介绍到这了,更多相关Python过滤相似文本内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python文本相似性计算之编辑距离详解

    编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.一般来说,编辑距离越小,两个串的相似度越大. 例如将kitten一字转成sitting:('kitten' 和 'sitting' 的编辑距离为3) sitten (k→s) sittin (e→i) sitting (→g) Python中的Levenshtein包可以方便的计算编辑距离

  • Python实现简单的文本相似度分析操作详解

    本文实例讲述了Python实现简单的文本相似度分析操作.分享给大家供大家参考,具体如下: 学习目标: 1.利用gensim包分析文档相似度 2.使用jieba进行中文分词 3.了解TF-IDF模型 环境: Python 3.6.0 |Anaconda 4.3.1 (64-bit) 工具: jupyter notebook 注:为了简化问题,本文没有剔除停用词"stop-word".实际应用中应该要剔除停用词. 首先引入分词API库jieba.文本相似度库gensim import ji

  • python文本数据相似度的度量

    编辑距离 编辑距离,又称为Levenshtein距离,是用于计算一个字符串转换为另一个字符串时,插入.删除和替换的次数.例如,将'dad'转换为'bad'需要一次替换操作,编辑距离为1. nltk.metrics.distance.edit_distance函数实现了编辑距离. from nltk.metrics.distance import edit_distance str1 = 'bad' str2 = 'dad' print(edit_distance(str1, str2)) N元语

  • Python 比较文本相似性的方法(difflib,Levenshtein)

    最近工作需要用到序列匹配,检测相似性,不过有点复杂的是输入长度是不固定的,举例为: input_and_output = [1, 2, '你好', 世界', 12.34, 45.6, -21, '中国', '美丽'] 其中,需要从input_and_output 中选取不固定长度的一段作为输入,且顺序不定,然后去与总体进行比较,找出最符合的,开始是对汉字进行数值化编码,不过后来由于出现汉字越来越多,遂放弃该方法,转向别的方式,查找资料发现了两个python包广被推荐,从下面来看各有优缺点,记录之

  • 利用Python过滤相似文本的简单方法示例

    问题 假设你在存档中有成千上万的文档,其中许多是彼此重复的,即使文档的内容相同,标题不同. 现在想象一下,现在老板要求你通过删除不必要的重复文档来释放一些空间. 问题是:如何过滤标题足够相似的文本,以使内容可能相同? 接下来,如何实现此目标,以便在完成操作时不会删除过多的文档,而保留一组唯一的文档? 让我们用一些代码使它更清楚: titles = [ "End of Year Review 2020", "2020 End of Year", "Janua

  • 利用Python提取PDF文本的简单方法实例

    目录 第一步,安装工具库 第二步,编写代码 第三步,执行 最后的话 你好,一般情况下,Ctrl+C 是最简单的方法,当无法 Ctrl+C 时,我们借助于 Python,以下是具体步骤: 第一步,安装工具库 1.tika — 用于从各种文件格式中进行文档类型检测和内容提取 2.wand — 基于 ctypes 的简单 ImageMagick 绑定 3.pytesseract — OCR 识别工具 创建一个虚拟环境,安装这些工具 python -m venv venv source venv/bin

  • python matplotlib 注释文本箭头简单代码示例

    注释文本箭头 结果展示: 完整代码示例: import numpy as np import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(5, 5)) ax.set_aspect(1) x1 = -1 + np.random.randn(100) y1 = -1 + np.random.randn(100) x2 = 1. + np.random.randn(100) y2 = 1. + np.random.randn(100

  • 利用python画一颗心的方法示例

    前言 Python一般使用Matplotlib制作统计图形,用它自己的说法是'让简单的事情简单,让复杂的事情变得可能'.用它可以制作折线图,直方图,条形图,散点图,饼图,谱图等等你能想到的和想不到的统计图形,这些图形可以导出为多种具有出版质量的格式.此外,它和ipython结合使用,确实方便,谁用谁知道!本文将介绍利用python中的matplotlib画一颗心,感兴趣的朋友们下面来一起看看吧. 安装matplotlib 首先要安装matplotlib pip install matplotli

  • 利用python批量修改word文件名的方法示例

    前言 最近不小心把硬盘给格式化了,由于当时的文件没有备份,所以一下所有的文件都没有了,于是只能采取补救措施,用文件恢复软件恢复了一部分的数据出来,但是恢复完毕的文件的文件名全丢了,所有的文件只有代号,如下面的图: 几万个文件这要是手动的改得要改到明年.所以便动手写了一个python的脚本程序来代替这种繁杂的操作. 实现分析 想让程序来理解我的word文档里到底是什么内容是不可能的了,但是好在我的word文档内容都有标题,大部分的标题正好就是这个文档的文件名,于是我便打算把文档的标题当作文件名,而

  • 如何利用python的tkinter实现一个简单的计算器

    做一个计算器,这是我想要达成的效果: 在按下按钮或者按下键盘的时候,第一行输入框会显示输入的内容,第二行显示框则会预览运算结果,如果发生异常,输入内容格式错误,无法计算,则显示框显示"错误". 按"="按钮或按键回车计算结果,结果显示在第一行. 1.准备工作 导入库 tkinter import tkinter as tk 2. 开始 定义两个变量: equal_is=False #定义一些变量 textchange='' equal_is 用于判断是否已经计算出结

  • 如何利用Python快速统计文本的行数

    ​​通常我们会用wc -l来统计文件行数,不过用Python统计也很简单. 要快速统计一个文本文件中的行数,其实就是要统计这个文本文件中换行符的个数.为了尽量提高速度,我们需要尽量多读一些文本然后一起处理.统计换行符的个数可以用bytes内置的count方法. 代码如下: from __future__ import print_function import time if __name__ == '__main__': import sys start = time.time() with

  • 使用Python进行二进制文件读写的简单方法(推荐)

    总的感觉,python本身并没有对二进制进行支持,不过提供了一个模块来弥补,就是struct模块. python没有二进制类型,但可以存储二进制类型的数据,就是用string字符串类型来存储二进制数据,这也没关系,因为string是以1个字节为单位的. import struct a=12.34 #将a变为二进制 bytes=struct.pack('i',a) 此时bytes就是一个string字符串,字符串按字节同a的二进制存储内容相同. 再进行反操作 现有二进制数据bytes,(其实就是字

  • 利用python打开摄像头及颜色检测方法

    最近两周由于忙于个人项目,一直未发言了,实在是太荒凉了....,上周由于项目,见到Python的应用极为广泛,用起来也特别顺手,于是小编也开始着手学习Python,-下面我就汇报下今天的学习成果吧 小编运行环境unbuntu 14.0.4 首先我们先安装一下Python呗,我用的2.7,其实特别简单,一行指令就OK sudo apt-get install python-dev 一般安装系统的时候其实python已经自带了,这步基本可以不用做,OK,我们继续往下走吧,安装python-openc

  • 利用python修改json文件的value方法

    做工程时遇到需要监听json文件,根据json文件中的key-value值作出相应处理的情形.为此写了修改json文件的python脚本供工程后续调用. 代码如下: # coding=utf-8 //设置文本格式 import os,sys import json def get_new_json(filepath,key,value): key_ = key.split(".") key_length = len(key_) with open(filepath, 'rb') as

随机推荐