浅谈pg_hint_plan定制执行计划

有的时候PG给出的执行计划由于很多原因并不是最优的,需要手动指定执行路径时我们可以加载pg_hint_plan这个插件。

1 安装插件

预先安装Postgresql10.7

cd postgresql-10.7/contrib/
wget https://github.com/ossc-db/pg_hint_plan/archive/REL10_1_3_3.tar.gz
tar xzvf pg_hint_plan-REL10_1_3_3.tar.gz
cd pg_hint_plan-REL10_1_3_3
make
make install

检查文件

cd $PGHOME
ls lib/pg_hint_plan.so
lib/pg_hint_plan.so
ls share/extension/
pg_hint_plan--1.3.0--1.3.1.sql pg_hint_plan--1.3.2--1.3.3.sql pg_hint_plan.control plpgsql.control
pg_hint_plan--1.3.1--1.3.2.sql pg_hint_plan--1.3.3.sql   plpgsql--1.0.sql  plpgsql--unpackaged--1.0.sql

2 加载插件

2.1 当前会话加载

LOAD 'pg_hint_plan';

注意这样加载只在当前回话生效。

2.2 用户、库级自动加载

alter user postgres set session_preload_libraries='pg_hint_plan';
alter database postgres set session_preload_libraries='pg_hint_plan';

配置错了的话就连不上数据库了!

如果配置错了,连接template1库执行

alter database postgres reset session_preload_libraries;
alter user postgres reset session_preload_libraries;

2.3 cluster级自动加载

在postgresql.conf中修改shared_preload_libraries=‘pg_hint_plan'

重启数据库

3 检查是否已经加载

pg_hint_plan加载后在extension里面是看不到的,所以需要确认插件是否已经加载

show session_preload_libraries;
 session_preload_libraries
---------------------------
 pg_hint_plan

或者

show shared_preload_libraries;

如果使用load方式加载不需要检查。

4 使用插件定制执行计划

4.1 初始化测试数据

create table t1 (id int, t int, name varchar(255));
create table t2 (id int , salary int);
create table t3 (id int , age int);
insert into t1 values (1,200,'jack');
insert into t1 values (2,300,'tom');
insert into t1 values (3,400,'john');
insert into t2 values (1,40000);
insert into t2 values (2,38000);
insert into t2 values (3,18000);
insert into t3 values (3,38);
insert into t3 values (2,55);
insert into t3 values (1,12);
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
              QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------
 Hash Right Join (cost=89.82..337.92 rows=17877 width=540) (actual time=0.053..0.059 rows=3 loops=1)
 Hash Cond: (t3.id = t1.id)
 -> Seq Scan on t3 (cost=0.00..32.60 rows=2260 width=8) (actual time=0.002..0.002 rows=3 loops=1)
 -> Hash (cost=70.05..70.05 rows=1582 width=532) (actual time=0.042..0.043 rows=3 loops=1)
   Buckets: 2048 Batches: 1 Memory Usage: 17kB
   -> Hash Right Join (cost=13.15..70.05 rows=1582 width=532) (actual time=0.034..0.039 rows=3 loops=1)
    Hash Cond: (t2.id = t1.id)
    -> Seq Scan on t2 (cost=0.00..32.60 rows=2260 width=8) (actual time=0.002..0.002 rows=3 loops=1)
    -> Hash (cost=11.40..11.40 rows=140 width=524) (actual time=0.017..0.017 rows=3 loops=1)
      Buckets: 1024 Batches: 1 Memory Usage: 9kB
      -> Seq Scan on t1 (cost=0.00..11.40 rows=140 width=524) (actual time=0.010..0.011 rows=3 loops=1)
 Planning time: 0.154 ms
 Execution time: 0.133 ms

创建索引

create index idx_t1_id on t1(id);
create index idx_t2_id on t2(id);
create index idx_t3_id on t3(id);
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
             QUERY PLAN
--------------------------------------------------------------------------------------------------------------
 Hash Left Join (cost=2.14..3.25 rows=3 width=540) (actual time=0.045..0.047 rows=3 loops=1)
 Hash Cond: (t1.id = t3.id)
 -> Hash Left Join (cost=1.07..2.14 rows=3 width=532) (actual time=0.030..0.032 rows=3 loops=1)
   Hash Cond: (t1.id = t2.id)
   -> Seq Scan on t1 (cost=0.00..1.03 rows=3 width=524) (actual time=0.005..0.006 rows=3 loops=1)
   -> Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.007..0.007 rows=3 loops=1)
    Buckets: 1024 Batches: 1 Memory Usage: 9kB
    -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=1)
 -> Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.005..0.005 rows=3 loops=1)
   Buckets: 1024 Batches: 1 Memory Usage: 9kB
   -> Seq Scan on t3 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.002 rows=3 loops=1)
 Planning time: 0.305 ms
 Execution time: 0.128 ms

4.2 强制走index scan

/*+ indexscan(t1 idx_d)
/*+ indexscan(t1 idx_t1_id)
explain (analyze,buffers) select * from t1 where id=2;
           QUERY PLAN
----------------------------------------------------------------------------------------------
 Seq Scan on t1 (cost=0.00..1.04 rows=1 width=524) (actual time=0.011..0.013 rows=1 loops=1)
 Filter: (id = 2)
 Rows Removed by Filter: 2
 Buffers: shared hit=1
 Planning time: 0.058 ms
 Execution time: 0.028 ms
explain (analyze,buffers) /*+ indexscan(t1) */select * from t1 where id=2;
             QUERY PLAN
----------------------------------------------------------------------------------------------------------------
 Index Scan using idx_t1_id on t1 (cost=0.13..8.15 rows=1 width=524) (actual time=0.044..0.046 rows=1 loops=1)
 Index Cond: (id = 2)
 Buffers: shared hit=1 read=1
 Planning time: 0.145 ms
 Execution time: 0.072 ms
explain (analyze,buffers) /*+ indexscan(t1 idx_t1_id) */select * from t1 where id=2;
             QUERY PLAN
----------------------------------------------------------------------------------------------------------------
 Index Scan using idx_t1_id on t1 (cost=0.13..8.15 rows=1 width=524) (actual time=0.016..0.017 rows=1 loops=1)
 Index Cond: (id = 2)
 Buffers: shared hit=2
 Planning time: 0.079 ms
 Execution time: 0.035 ms

4.3 强制多条件组合

/*+ indexscan(t2) indexscan(t1 idx_t1_id) */
/*+ seqscan(t2) indexscan(t1 idx_t1_id) */
explain analyze SELECT * FROM t1 JOIN t2 ON (t1.id = t2.id);
            QUERY PLAN
--------------------------------------------------------------------------------------------------------
 Hash Join (cost=1.07..2.14 rows=3 width=532) (actual time=0.018..0.020 rows=3 loops=1)
 Hash Cond: (t1.id = t2.id)
 -> Seq Scan on t1 (cost=0.00..1.03 rows=3 width=524) (actual time=0.006..0.007 rows=3 loops=1)
 -> Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.005..0.005 rows=3 loops=1)
   Buckets: 1024 Batches: 1 Memory Usage: 9kB
   -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.001..0.003 rows=3 loops=1)
 Planning time: 0.114 ms
 Execution time: 0.055 ms
(8 rows)

组合两个条件走indexscan

/*+ indexscan(t2) indexscan(t1 idx_t1_id) */explain analyze SELECT * FROM t1 JOIN t2 ON (t1.id = t2.id);
              QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
 Merge Join (cost=0.26..24.40 rows=3 width=532) (actual time=0.047..0.053 rows=3 loops=1)
 Merge Cond: (t1.id = t2.id)
 -> Index Scan using idx_t1_id on t1 (cost=0.13..12.18 rows=3 width=524) (actual time=0.014..0.015 rows=3 loops=1)
 -> Index Scan using idx_t2_id on t2 (cost=0.13..12.18 rows=3 width=8) (actual time=0.026..0.028 rows=3 loops=1)

组合两个条件走indexscan+seqscan

/*+ seqscan(t2) indexscan(t1 idx_t1_id) */explain analyze SELECT * FROM t1 JOIN t2 ON (t1.id = t2.id);
              QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------
 Nested Loop (cost=0.13..13.35 rows=3 width=532) (actual time=0.025..0.032 rows=3 loops=1)
 Join Filter: (t1.id = t2.id)
 Rows Removed by Join Filter: 6
 -> Index Scan using idx_t1_id on t1 (cost=0.13..12.18 rows=3 width=524) (actual time=0.016..0.018 rows=3 loops=1)
 -> Materialize (cost=0.00..1.04 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=3)
   -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.004..0.005 rows=3 loops=1)

4.4 强制指定join method

/*+ NestLoop(t1 t2) MergeJoin(t1 t2 t3) Leading(t1 t2 t3) */
/*+ NestLoop(t1 t2 t3) MergeJoin(t2 t3) Leading(t1 (t2 t3)) */
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
             QUERY PLAN
--------------------------------------------------------------------------------------------------------------
 Hash Left Join (cost=2.14..3.25 rows=3 width=540) (actual time=0.053..0.056 rows=3 loops=1)
 Hash Cond: (t1.id = t3.id)
 -> Hash Left Join (cost=1.07..2.14 rows=3 width=532) (actual time=0.036..0.038 rows=3 loops=1)
   Hash Cond: (t1.id = t2.id)
   -> Seq Scan on t1 (cost=0.00..1.03 rows=3 width=524) (actual time=0.007..0.007 rows=3 loops=1)
   -> Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.009..0.009 rows=3 loops=1)
    Buckets: 1024 Batches: 1 Memory Usage: 9kB
    -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=1)
 -> Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.006..0.006 rows=3 loops=1)
   Buckets: 1024 Batches: 1 Memory Usage: 9kB
   -> Seq Scan on t3 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=1)

强制走循环嵌套连接

/*+ NestLoop(t1 t2) MergeJoin(t1 t2 t3) Leading(t1 t2 t3) */
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
              QUERY PLAN
--------------------------------------------------------------------------------------------------------------------
 Merge Left Join (cost=3.28..3.34 rows=3 width=540) (actual time=0.093..0.096 rows=3 loops=1)
 Merge Cond: (t1.id = t3.id)
 -> Sort (cost=2.23..2.23 rows=3 width=532) (actual time=0.077..0.078 rows=3 loops=1)
   Sort Key: t1.id
   Sort Method: quicksort Memory: 25kB
   -> Nested Loop Left Join (cost=0.00..2.20 rows=3 width=532) (actual time=0.015..0.020 rows=3 loops=1)
    Join Filter: (t1.id = t2.id)
    Rows Removed by Join Filter: 6
    -> Seq Scan on t1 (cost=0.00..1.03 rows=3 width=524) (actual time=0.005..0.005 rows=3 loops=1)
    -> Materialize (cost=0.00..1.04 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=3)
      -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=1)
 -> Sort (cost=1.05..1.06 rows=3 width=8) (actual time=0.012..0.013 rows=3 loops=1)
   Sort Key: t3.id
   Sort Method: quicksort Memory: 25kB
   -> Seq Scan on t3 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=1)

控制连接顺序

/*+ NestLoop(t1 t2 t3) MergeJoin(t2 t3) Leading(t1 (t2 t3)) */
explain analyze select * from t1 left join t2 on t1.id=t2.id left join t3 on t1.id=t3.id;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------
 Nested Loop Left Join (cost=1.07..3.31 rows=3 width=540) (actual time=0.036..0.041 rows=3 loops=1)
 Join Filter: (t1.id = t3.id)
 Rows Removed by Join Filter: 6
 -> Hash Left Join (cost=1.07..2.14 rows=3 width=532) (actual time=0.030..0.032 rows=3 loops=1)
   Hash Cond: (t1.id = t2.id)
   -> Seq Scan on t1 (cost=0.00..1.03 rows=3 width=524) (actual time=0.008..0.009 rows=3 loops=1)
   -> Hash (cost=1.03..1.03 rows=3 width=8) (actual time=0.007..0.007 rows=3 loops=1)
    Buckets: 1024 Batches: 1 Memory Usage: 9kB
    -> Seq Scan on t2 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.004 rows=3 loops=1)
 -> Materialize (cost=0.00..1.04 rows=3 width=8) (actual time=0.001..0.002 rows=3 loops=3)
   -> Seq Scan on t3 (cost=0.00..1.03 rows=3 width=8) (actual time=0.002..0.003 rows=3 loops=1)

4.5 控制单条SQL的cost

/*+ set(seq_page_cost 20.0) seqscan(t1) */
/*+ set(seq_page_cost 20.0) seqscan(t1) */explain analyze select * from t1 where id > 1;
           QUERY PLAN
-----------------------------------------------------------------------------------------------
 Seq Scan on t1 (cost=0.00..20.04 rows=1 width=524) (actual time=0.011..0.013 rows=2 loops=1)
 Filter: (id > 1)
 Rows Removed by Filter: 1

set seq_page_cost 200,注意下面的cost已经变成了200.04

/*+ set(seq_page_cost 200.0) seqscan(t1) */explain analyze select * from t1 where id > 1;
           QUERY PLAN
------------------------------------------------------------------------------------------------
 Seq Scan on t1 (cost=0.00..200.04 rows=1 width=524) (actual time=0.010..0.011 rows=2 loops=1)
 Filter: (id > 1)
 Rows Removed by Filter: 1

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • postgreSQL中的row_number() 与distinct用法说明

    我就废话不多说了,大家还是直接看代码吧~ select count(s.*) from ( select *, row_number() over (partition by fee_date order by fee_date) as gr from new_order where news_id='novel' and order_status='2' ) s where s.gr = 1 SELECT count(DISTINCT fee_date) as dis from new_ord

  • Postgresql 动态统计某一列的某一值出现的次数实例

    实例解析: select to_char(log.date, 'yyyy-MM-dd HH24') as hour, log.exten, sum(case log.grade when '1' then 1 else 0 end) as "1", sum(case log.grade when '2' then 1 else 0 end) as "2", sum(case log.grade when '3' then 1 else 0 end) as "

  • PostgreSQL 查看表的主外键等约束关系详解

    我就废话不多说了,大家还是直接看代码吧~ SELECT tc.constraint_name, tc.table_name, kcu.column_name, ccu.table_name AS foreign_table_name, ccu.column_name AS foreign_column_name, tc.is_deferrable,tc.initially_deferred FROM information_schema.table_constraints AS tc JOIN

  • postgresql 计算两点距离的2种方法小结

    postgresql计算两点距离 下面两种方法: select ST_Distance( ST_SetSRID(ST_MakePoint(115.97166453999147,28.716493914230423),4326)::geography, ST_SetSRID(ST_MakePoint(106.00231199774656,29.719258550486572),4326)::geography ), ST_Length( ST_MakeLine( ST_MakePoint(115.

  • PostgreSQL 修改视图的操作

    最近发现PostgreSQL(create or replace) 修改视图有很多的限制,不像SQL Server和Oracle那样可以随意修改. 错误提示 修改视图原有字段 ERROR: cannot change name of view column "user_id" to "?column?" 删除视图原有字段 ERROR: cannot drop columns from view 找到如下原因,内容原文 究其原因,是PostgreSQL虽然支持CREA

  • CentOS PostgreSQL 12 主从复制(主从切换)操作

    主从复制 1. 基于文件的日志传送 创建一个高可用性(HA)集群配置可采用连续归档,集群中主服务器工作在连续归档模式下,备服务器工作在连续恢复模式下(1台或多台可随时接管主服务器),备持续从主服务器读取WAL文件. 连续归档不需要对数据库表做任何改动,可有效降低管理开销,对主服务器的性能影响也相对较低. 直接从一个数据库服务器移动WAL记录到另一台服务器被称为日志传送,PostgreSQL通过一次一文件(WAL段)的WAL记录传输实现了基于文件的日志传送. 日志传送所需的带宽取根据主服务器的事务

  • PostgreSQL 更新视图脚本的注意事项说明

    项目最早是基于Oracle的,移植到PostgreSQL后,本着尽量少修改的原则,创建/更新视图的脚本也沿用了Oracle风格的CREATE OR REPLACE VIEW形式.但是每当要更新视图定义时,常常报"cannot change name of view column xxx to yyy"的错误,通常是在视图修改某字段名.中间增加字段.删除字段时发生. 究其原因,是PostgreSQL虽然支持CREATE OR REPLACE VIEW语义,却有着容易让人忽略的重要限制(O

  • PostgreSQL 慢查询SQL跟踪操作

    PostgreSQL 开启慢SQL捕获在排查问题时是个很有效的手段.根据慢SQL让我在工作中真正解决了实际问题,很有帮助. PostgreSQL 日志支持的输出格式有 stderr(默认).csvlog .syslog 一般的错误跟踪,只需在配置文件 [postgresql.conf]简单设置几个参数,当然还有错误级别等要设置. logging_collector = on log_destination = 'stderr' log_directory = 'log' log_filename

  • 浅谈pg_hint_plan定制执行计划

    有的时候PG给出的执行计划由于很多原因并不是最优的,需要手动指定执行路径时我们可以加载pg_hint_plan这个插件. 1 安装插件 预先安装Postgresql10.7 cd postgresql-10.7/contrib/ wget https://github.com/ossc-db/pg_hint_plan/archive/REL10_1_3_3.tar.gz tar xzvf pg_hint_plan-REL10_1_3_3.tar.gz cd pg_hint_plan-REL10_

  • 浅谈PHP命令执行php文件需要注意的问题

    require_once '/data/web/fewfawef/wwwroot/Public/queenchuli/common/mysql.php'; 里面必须要写绝对路径 写死 才行哈 这样就不会出错了 以上这篇浅谈PHP命令执行php文件需要注意的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 浅谈终端直接执行py文件,不需要python命令

    然后给脚本文件运行权限, 方法(1)chmod +x ./*.py 方法(2)chmod 755 ./*.py (777也无所谓啦) 这个命令不去调整,会出现permission denied的错误 终端直接执行. 如果在脚本内容的开头已经给出了类似于如下的注释: #!/usr/bin/env python(或者是 #!/usr/bin/python) 那就可以直接在终端里运行: ./*.py 如果没有这个注释 就在终端中执行: python ./*.py (注意:有些linux版本上运行即使上

  • 浅谈SpringMVC的执行流程

    #简易版 1.客户发送请求经过 DisPatcherServlet 核心过滤器 2.DisPatcherServlet 核心控制器在去找一个或多个HandlerMappering 找到需要处理的Controller 3.DisPatcherServlet 通过HandlerAdapter将请求转发给 Controller 4.Controller 调用业务处理后返回结果给 ModelAndView 5.DisPatcherServlet 找到一个或者多个 ViewResolver 视图解析器 找

  • 浅谈onTouch先执行,还是onClick执行(详解)

    有一个Button 按钮,要想为该按钮设置onClick事件和OnTouch事件 mTestButton.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View view) { Log.d(TAG, "onClick execute"); } }); mTestButton.setOnTouchListener(new View.OnTouchListener() { @Ove

  • 浅谈MyBatis 如何执行一条 SQL语句

    前言 Mybatis 是 Java 开发中比较常用的 ORM 框架.在日常工作中,我们都是直接通过 Spring Boot 自动配置,并直接使用,但是却不知道 Mybatis 是如何执行一条 SQL 语句的,而这篇文章就是来揭开 Mybatis 的神秘面纱. 基础组件 我们要理解 Mybatis 的执行过程,就必须先了解 Mybatis 中都有哪一些重要的类,这些类的职责都是什么? SqlSession 我们都很熟悉,它对外提供用户和数据库之间交互需要使用的方法,隐藏了底层的细节.它默认是实现类

  • 浅谈Mybatis SqlSession执行流程

    目录 Mybatis执行SQL流程 SqlSession Executor Mybatis之Executor Mybatis之StatementHandler 进入ResultSetHandler Mybatis执行SQL流程 在看源码之前,我们需要了解一些基本知识,如果您没有阅读Mybatis SqlSessionFactory 初始化原理,可以先阅读Mybatis SqlSessionFactory 初始化原理这篇文章,这用更有助于我们理解接下来的文章 在看源码之前,我们需要了解一些基本知识

  • 浅谈:linux cron 计划任务常用符号小结

    [root@wx-a ~]# crontab --help crontab: invalid option -- '-' crontab: usage error: unrecognized option usage: crontab [-u user] file crontab [-u user] [ -e | -l | -r ] (default operation is replace, per 1003.2) -e (edit user's crontab) 编辑crontab 工作内容

  • 浅谈JavaScript 的执行顺序

    虽然现代浏览器可以并行的下载JavaScript(部分浏览器),但考虑到JavaScript的依赖关系,他们的执行依然是按照引入顺序进行的. 本文章记录本人在学习 JavaScript 中看书理解到的一些东西,加深记忆和并且整理记录下来,方便之后的复习. 在 html 文档中的执行顺序 js代码执行顺序比较的形象,用户可以直观的感受这种执行顺序.但是,js代码的执行顺序是比较复杂的.有时候我们会把js代码写在html里面,而html文档在浏览器中解析的过程是这样:浏览器按照文档流从上到下逐步解析

  • 浅谈javascript中执行环境(作用域)与作用域链

    相信很多初学者对与javascript中的执行环境与作用域链不能很好的理解,这里,我会按照自己的理解同大家一起分享. 一般情况下,我们把执行环境分为全局执行环境和局部执行环境,其中局部执行环境我们又可以称之为函数执行环境.那么究竟什么使执行环境呢?通俗的说,执行环境即为代码执行时所处的环境.我们下来看一看如下代码,再进一步分析之. <script><br>var name="zhuzhenwei"; function changeName(){ if (name

随机推荐