pandas中apply和transform方法的性能比较及区别介绍

1. apply与transform

首先讲一下apply() 与transform()的相同点与不同点

相同点:

都能针对dataframe完成特征的计算,并且常常与groupby()方法一起使用。

不同点:

apply()里面可以跟自定义的函数,包括简单的求和函数以及复杂的特征间的差值函数等(注:apply不能直接使用agg()方法 / transform()中的python内置函数,例如sum、max、min、'count‘等方法)

transform() 里面不能跟自定义的特征交互函数,因为transform是真针对每一元素(即每一列特征操作)进行计算,也就是说在使用 transform() 方法时,需要记得三点:

1、它只能对每一列进行计算,所以在groupby()之后,.transform()之前是要指定要操作的列,这点也与apply有很大的不同。

2、由于是只能对每一列计算,所以方法的通用性相比apply()就局限了很多,例如只能求列的最大/最小/均值/方差/分箱等操作

3、transform还有什么用呢?最简单的情况是试图将函数的结果分配回原始的dataframe。也就是说返回的shape是(len(df),1)。注:如果与groupby()方法联合使用,需要对值进行去重

2. 各方法耗时

分别计算在同样简单需求下各组合方法的计算时长

2.1 transform() 方法+自定义函数

2.2 transform() 方法+python内置方法

2.3 apply() 方法+自定义函数

2.4 agg() 方法+自定义函数

2.5 agg() 方法+python内置方法

2.6 结论

agg()+python内置方法的计算速度最快,其次是transform()+python内置方法。而 transform() 方法+自定义函数 的组合方法最慢,需要避免使用!

而下面两图中红框内容可观察发现:python自带的stats统计模块在pandas结构中的计算也非常慢,也需要避免使用!

3. 实例分析

需求:计算每个用户每天

某种行为消费次数、消费总额、消费均额、消费最大额、消费最小额

在几个终端支付、最常支付终端号、最常支付终端号的支付次数、最少支付终端号、最少支付终端号的支付次数

某种行为最常消费发生时间段、最常消费发生时间段的消费次数、最少消费发生时间段、最少消费发生时间段的消费次数

某种行为最早消费时间、最晚消费时间

原始数据信息:306626 x 9

具体选择哪种方法处理,根据实际情况确定,在面对复杂计算时,transform() 与apply()结合使用往往会有意想不到的效果!

需要注意的是,在与apply()一起使用时,transform需要进行去重操作,一般是通过指定一或多个列完成。

此外,匿名函数永远不是一个很好的办法,在进行简单计算时,无论是使用transfrom、agg还是apply,都要尽可能使用自带方法!!!

4. 小技巧

在使用apply()方法处理大数据级时,可以考虑使用joblib中的多线程/多进程模块构造相应函数执行计算,以下分别是采用多进程和单进程的耗时时长。

可以看到,在260W的数据集上,多进程比单进程的计算速度可以提升约17%~61%  。

总结

以上所述是小编给大家介绍的pandas中apply和transform方法的性能比较,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • pandas apply 函数 实现多进程的示例讲解

    前言: 在进行数据处理的时候,我们经常会用到 pandas .但是 pandas 本身好像并没有提供多进程的机制.本文将介绍如何来自己实现 pandas (apply 函数)的多进程执行.其中,我们主要借助 joblib库,这个库为python 提供了一个非常简洁方便的多进程实现方法. 所以,本文将按照下面的安排展开,前面可能比较啰嗦,若只是想知道怎么用可直接看第三部分: - 首先简单介绍 pandas 中的分组聚合操作 groupby. - 然后简单介绍 joblib 的使用方法. - 最后,

  • 浅谈Pandas中map, applymap and apply的区别

    1.apply() 当想让方程作用在一维的向量上时,可以使用apply来完成,如下所示 In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon']) In [117]: frame Out[117]: b d e Utah -0.029638 1.081563 1.280300 Ohio 0.647747 0.831136 -1.

  • 对pandas中apply函数的用法详解

    最近在使用apply函数,总结一下用法. apply函数可以对DataFrame对象进行操作,既可以作用于一行或者一列的元素,也可以作用于单个元素. 例:列元素 行元素 列 行 以上这篇对pandas中apply函数的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: 浅谈Pandas中map, applymap and apply的区别

  • pandas 使用apply同时处理两列数据的方法

    多的不说,看了代码就懂了! df = pd.DataFrame ({'a' : np.random.randn(6), 'b' : ['foo', 'bar'] * 3, 'c' : np.random.randn(6)}) def my_test(a, b): return a + b df['Value'] = df.apply(lambda row: my_test(row['a'], row['c']), axis=1) print df 以上这篇pandas 使用apply同时处理两列

  • pandas使用apply多列生成一列数据的实例

    如下所示: import pandas as pd def my_min(a, b): return min(abs(a),abs(b)) s = pd.Series([10.0247,10.0470, 10.0647,10.0761,15.0800,10.0761,10.0647,10.0470,10.0247,10.0,9.9753,9.9530,9.9353,9.9239,18.92,9.9239,9.9353,9.9530,9.9753,10.0]) df = pd.DataFrame(

  • 详谈pandas中agg函数和apply函数的区别

    在利用python进行数据分析 这本书中其实没有明确表明这两个函数的却别,而是说apply更一般化. 其实在这本书的第九章'数组及运算和转换'点到了两者的一点点区别:agg是用来聚合运算的,所谓的聚合当然是合成的成分比较大些,这一节开头就点到了:聚合只不过是分组运算的其中一种而已.它是数据转换的一个特例,也就是说,它接受能够将一维数组简化为标量值的函数. 当然这两个函数都是作用在groupby对象上的,也就是分完组的对象上的,分完组之后针对某一组,如果值是一维数组,在利用完特定的函数之后,能做到

  • pandas中apply和transform方法的性能比较及区别介绍

    1. apply与transform 首先讲一下apply() 与transform()的相同点与不同点 相同点: 都能针对dataframe完成特征的计算,并且常常与groupby()方法一起使用. 不同点: apply()里面可以跟自定义的函数,包括简单的求和函数以及复杂的特征间的差值函数等(注:apply不能直接使用agg()方法 / transform()中的python内置函数,例如sum.max.min.'count'等方法) transform() 里面不能跟自定义的特征交互函数,

  • js中apply和Math.max()函数的问题及区别介绍

    下面给大家介绍js中apply和Math.max()函数的问题,具体内容如下所示: var arr=[1,3,6,3,7,9,2]; console.log(Math.max.apply(null,arr)); 一直搞不懂为什么这样可以算出一个数组的最大值?一直想不明白,请js高手指教一下. 答案1 Function.apply()是JS的一个OOP特性,一般用来模拟继承和扩展this的用途,对于上面这段代码,可以这样去理解: XXX.apply是一个调用函数的方法,其参数为:apply(Fun

  • Pandas中Series的属性,方法,常用操作使用案例

    目录 1. Series 对象的创建 1.1 创建一个空的 Series 对象 1.2 通过列表创建一个 Series 对象 1.3 通过元组创建一个 Series 对象 1.4 通过字典创建一个 Series 对象 1.5 通过 ndarray 创建一个 Series 对象 1.6 创建 Series 对象时指定索引 1.7 通过一个标量(数)创建一个 Series 对象 2. Series 的属性 2.1 values ---- 返回一个 ndarray 数组 2.2 index ----

  • Pandas中Apply函数加速百倍的技巧分享

    目录 前言 实验对比 01 Apply(Baseline) 02 Swift加速 03 向量化 04 类别转化+向量化 05 转化为values处理 实验汇总 前言 虽然目前dask,cudf等包的出现,使得我们的数据处理大大得到了加速,但是并不是每个人都有比较好的gpu,非常多的朋友仍然还在使用pandas工具包,但有时候真的很无奈,pandas的许多问题我们都需要使用apply函数来进行处理,而apply函数是非常慢的,本文我们就介绍如何加速apply函数600倍的技巧. 实验对比 01 A

  • Python pandas中apply函数简介以及用法详解

    目录 1.基本信息 2.语法结构 3.使用案例 3.1 DataFrame使用apply 3.2 Series使用apply 3.3 其他案例 4.总结 参考链接: 1.基本信息 ​ Pandas 的 apply() 方法是用来调用一个函数(Python method),让此函数对数据对象进行批量处理.Pandas 的很多对象都可以使用 apply() 来调用函数,如 Dataframe.Series.分组对象.各种时间序列等. 2.语法结构 ​ apply() 使用时,通常放入一个 lambd

  • 深入理解关于javascript中apply()和call()方法的区别

    如果没接触过动态语言,以编译型语言的思维方式去理解javaScript将会有种神奇而怪异的感觉,因为意识上往往不可能的事偏偏就发生了,甚至觉得不可理喻.如果在学JavaScript这自由而变幻无穷的语言过程中遇到这种感觉,那么就从现在形始,请放下的您的"偏见",因为这对您来说绝对是一片新大陆,让JavaScrip慢慢融化以前一套凝固的编程意识,注入新的生机! 好,言归正传,先理解JavaScrtipt动态变换运行时上下文特性,这种特性主要就体现在apply, call两个方法的运用上.

  • 浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

    pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆.下面举例对这些切片方法进行说明. 数据介绍 先随机生成一组数据: In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_3 = [random.randrange(1,20) for x in xrange(1

  • JS中dom0级事件和dom2级事件的区别介绍

    dom0级事件 <a href="#" id="hash" onclick="fn();fn();"> <button type="button">返回上面进行开通</button> </a> var btn=$('#hash').get(); btn.onclick=function(){ alert(''); }; btn.onclick=function(){ alert(

  • javascript中apply和call方法的作用及区别说明

    一.call和apply的说明 1.call,apply都属于Function.prototype的一个方法,它是JavaScript引擎内在实现的,因为属于Function.prototype,所以每个Function对象实例(就是每个方法)都有call,apply属性.既然作为方法的属性,那它们的使用就当然是针对方法的了,这两个方法是容易混淆的,因为它们的作用一样,只是使用方式不同. 2.语法:foo.call(this, arg1,arg2,arg3) == foo.apply(this,

随机推荐