Python中11种NumPy高级操作总结

目录
  • 1.数组上的迭代
  • 2.数组形状修改函数
    • 1.ndarray.reshape
    • 2.ndarray.flat
    • 3.ndarray.flatten
  • 3.数组翻转操作函数
    • 1.numpy.transpose
    • 2. numpy.ndarray.T
    • 3.numpy.swapaxes
    • 4.numpy.rollaxis
  • 4.数组修改维度函数
    • 1.numpy.broadcast_to
    • 2.numpy.expand_dims
    • 3.numpy.squeeze
  • 5.数组的连接操作
    • 1.numpy.stack
    • 2.numpy.hstack
    • 3.numpy.vstack
    • 4.numpy.concatenate
  • 6.数组的分割操作
    • 1.numpy.split
    • 2.numpy.hsplit
    • 3.numpy.vsplit
  • 7.数组元素操作
    • 1.numpy.resize
    • 2.numpy.append
    • 3.numpy.insert
    • 4.numpy.delete
    • 5.numpy.unique
  • 8.NumPy - 字符串函数
  • 9.NumPy - 算数函数
    • 1. NumPy -三角函数
    • 2.NumPy -舍入函数
    • 3.NumPy - 算数运算
    • 4.NumPy - 统计函数
  • 10.排序、搜索和计数函数
  • 11.IO文件操作

1.数组上的迭代

NumPy 包含一个迭代器对象numpy.nditer。它是一个有效的多维迭代器对象,可以用于在数组上进行迭代。数组的每个元素可使用 Python 的标准Iterator接口来访问。

import numpy as np
a = np.arange(0, 60, 5)
a = a.reshape(3, 4)
print(a)
for x in np.nditer(a):
    print(x)

输出结果:

[[ 0  5 10 15]
 [20 25 30 35]
 [40 45 50 55]]
0
5
10
15
20
25
30
35
40
45
50
55

如果两个数组是可广播的,nditer组合对象能够同时迭代它们。假设数 组a具有维度 3X4,并且存在维度为 1X4 的另一个数组b,则使用以下类型的迭代器(数组b被广播到a的大小)。

import numpy as np
a = np.arange(0, 60, 5)
a = a.reshape(3, 4)
print(a)
b = np.array([1, 2, 3, 4], dtype=int)
print(b)
for x, y in np.nditer([a, b]):
    print(x, y)

输出结果:

[[ 0  5 10 15]
 [20 25 30 35]
 [40 45 50 55]]
[1 2 3 4]
0 1
5 2
10 3
15 4
20 1
25 2
30 3
35 4
40 1
45 2
50 3
55 4

2.数组形状修改函数

1.ndarray.reshape

函数在不改变数据的条件下修改形状,参数如下:

ndarray.reshape(arr, newshape, order)

import numpy as np
a = np.arange(8)
print(a)
b = a.reshape(4, 2)
print(b)

输出结果:

[0 1 2 3 4 5 6 7]
[[0 1]
 [2 3]
 [4 5]
 [6 7]]

2.ndarray.flat

函数返回数组上的一维迭代器,行为类似 Python 内建的迭代器。

import numpy as np
a = np.arange(0, 16, 2).reshape(2, 4)
print(a)
# 返回展开数组中的下标的对应元素
print(list(a.flat))

输出结果:

[[ 0  2  4  6]
 [ 8 10 12 14]]
[0, 2, 4, 6, 8, 10, 12, 14]

3.ndarray.flatten

函数返回折叠为一维的数组副本,函数接受下列参数:

ndarray.flatten(order)

其中:

order:‘C’ — 按行,‘F’ — 按列,‘A’ — 原顺序,‘k’ —元素在内存中的出现顺序。

import numpy as np
a = np.arange(8).reshape(2, 4)
print(a)
# default is column-major
print(a.flatten())
print(a.flatten(order='F'))

输出结果:

[[0 1 2 3]
 [4 5 6 7]]
[0 1 2 3 4 5 6 7]
[0 4 1 5 2 6 3 7]

3.数组翻转操作函数

1.numpy.transpose

函数翻转给定数组的维度。如果可能的话它会返回一个视图。函数接受下列参数:

numpy.transpose(arr, axes)

其中:

arr:要转置的数组

axes:整数的列表,对应维度,通常所有维度都会翻转。

import numpy as np
a = np.arange(24).reshape(2, 3, 4)
print(a)
b = np.array(np.transpose(a))
print(b)
print(b.shape)

输出结果:

[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]

[[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]
[[[ 0 12]
  [ 4 16]
  [ 8 20]]

[[ 1 13]
  [ 5 17]
  [ 9 21]]

[[ 2 14]
  [ 6 18]
  [10 22]]

[[ 3 15]
  [ 7 19]
  [11 23]]]
(4, 3, 2)

b = np.array(np.transpose(a, (1, 0, 2)))
print(b)
print(b.shape

输出结果:

[[[ 0  1  2  3]
  [12 13 14 15]]

[[ 4  5  6  7]
  [16 17 18 19]]

[[ 8  9 10 11]
  [20 21 22 23]]]
(3, 2, 4)

2. numpy.ndarray.T

该函数属于ndarray类,行为类似于numpy.transpose.

import numpy as np
a = np.arange(12).reshape(3, 4)
print(a)
print(a.T)

输出结果:

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
[[ 0  4  8]
 [ 1  5  9]
 [ 2  6 10]
 [ 3  7 11]]

3.numpy.swapaxes

函数交换数组的两个轴。这个函数接受下列参数:

numpy.swapaxes(arr, axis1, axis2)

其中:

arr:要交换其轴的输入数组

axis1:对应第一个轴的整数

axis2:对应第二个轴的整数

import numpy as np
a = np.arange(8).reshape(2, 2, 2)
print(a)
print(np.swapaxes(a, 2, 0))

输出结果:

[[[0 1]
  [2 3]]

[[4 5]
  [6 7]]]
[[[0 4]
  [2 6]]

[[1 5]
  [3 7]]]

4.numpy.rollaxis

numpy.rollaxis() 函数向后滚动特定的轴,直到一个特定位置。这个函数接受三个参数:

numpy.rollaxis(arr, axis, start)

其中:

arr:输入数组

axis:要向后滚动的轴,其它轴的相对位置不会改变

start:默认为零,表示完整的滚动。会滚动到特定位置。

import numpy as np
a = np.arange(8).reshape(2,2,2)
print(a)
print(np.rollaxis(a,2))
print(np.rollaxis(a,2,1))

输出结果:

[[[0 1]
  [2 3]]

[[4 5]
  [6 7]]]
[[[0 2]
  [4 6]]

[[1 3]
  [5 7]]]
[[[0 2]
  [1 3]]

[[4 6]
  [5 7]]]

4.数组修改维度函数

1.numpy.broadcast_to

函数将数组广播到新形状。它在原始数组上返回只 读视图。它通常不连续。如果新形状不符合 NumPy 的广播规则,该函数可能会抛出ValueError。该函数接受以下参数:

numpy.broadcast_to(array, shape, subok)

import numpy as np
a = np.arange(4).reshape(1,4)
print(a)
print(np.broadcast_to(a,(4,4)))

输出结果:

[[0 1 2 3]]
[[0 1 2 3]
 [0 1 2 3]
 [0 1 2 3]
 [0 1 2 3]]

2.numpy.expand_dims

函数通过在指定位置插入新的轴来扩展数组形状。该函数需要两个参数:

numpy.expand_dims(arr, axis)

其中:

arr:输入数组

axis:新轴插入的位置

import numpy as np
x = np.array(([1, 2], [3, 4]))
print(x)
y = np.expand_dims(x, axis=0)
print(y)
print(x.shape, y.shape)
y = np.expand_dims(x, axis=1)
print(y)
print(x.ndim, y.ndim)
print(x.shape, y.shape)

输出结果:

[[1 2]
 [3 4]]
[[[1 2]
  [3 4]]]
(2, 2) (1, 2, 2)
[[[1 2]]

[[3 4]]]
2 3
(2, 2) (2, 1, 2)

3.numpy.squeeze

函数从给定数组的形状中删除一维条目。此函数需要两 个参数。

numpy.squeeze(arr, axis)

其中:

arr:输入数组

axis:整数或整数元组,用于选择形状中单一维度条目的子集

import numpy as np
x = np.arange(9).reshape(1, 3, 3)
print(x)
y = np.squeeze(x)
print(y)
print(x.shape, y.shape)

输出结果:

[[[0 1 2]
  [3 4 5]
  [6 7 8]]]
[[0 1 2]
 [3 4 5]
 [6 7 8]]
(1, 3, 3) (3, 3)

5.数组的连接操作

NumPy中数组的连接函数主要有如下四个:

  • concatenate 沿着现存的轴连接数据序列
  • stack 沿着新轴连接数组序列
  • hstack 水平堆叠序列中的数组(列方向)
  • vstack 竖直堆叠序列中的数组(行方向)

1.numpy.stack

函数沿新轴连接数组序列,需要提供以下参数:

numpy.stack(arrays, axis)

其中:

  • arrays:相同形状的数组序列
  • axis:返回数组中的轴,输入数组沿着它来堆叠
import numpy as np
a = np.array([[1,2],[3,4]])
print(a)
b = np.array([[5,6],[7,8]])
print(b)
print(np.stack((a,b),0))
print(np.stack((a,b),1))

输出结果:

[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
[[[1 2]
  [3 4]]

[[5 6]
  [7 8]]]
[[[1 2]
  [5 6]]

[[3 4]
  [7 8]]]

2.numpy.hstack

numpy.stack()函数的变体,通过堆叠来生成水平的单个数组。

import numpy as np
a = np.array([[1, 2], [3, 4]])
print(a)
b = np.array([[5, 6], [7, 8]])
print(b)
print('水平堆叠:')
c = np.hstack((a, b))
print(c)

输出结果:

[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
水平堆叠:
[[1 2 5 6]
 [3 4 7 8]]

3.numpy.vstack

numpy.stack()函数的变体,通过堆叠来生成竖直的单个数组。

import numpy as np
a = np.array([[1, 2], [3, 4]])
print(a)
b = np.array([[5, 6], [7, 8]])
print(b)
print('竖直堆叠:')
c = np.vstack((a, b))
print(c)

输出结果:

[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
竖直堆叠:
[[1 2]
 [3 4]
 [5 6]
 [7 8]]

4.numpy.concatenate

函数用于沿指定轴连接相同形状的两个或多个数组。该函数接受以下参数。

numpy.concatenate((a1, a2, …), axis)

其中:

  • a1, a2, ...:相同类型的数组序列
  • axis:沿着它连接数组的轴,默认为 0
import numpy as np
a = np.array([[1,2],[3,4]])
print(a)
b = np.array([[5,6],[7,8]])
print(b)
print(np.concatenate((a,b)))
print(np.concatenate((a,b),axis = 1))

输出结果:

[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
[[1 2]
 [3 4]
 [5 6]
 [7 8]]
[[1 2 5 6]
 [3 4 7 8]]

6.数组的分割操作

NumPy中数组的数组分割函数主要如下:

  • split 将一个数组分割为多个子数组
  • hsplit 将一个数组水平分割为多个子数组(按列)
  • vsplit 将一个数组竖直分割为多个子数组(按行)

1.numpy.split

该函数沿特定的轴将数组分割为子数组。函数接受三个参数:

numpy.split(ary, indices_or_sections, axis)

其中:

  • ary:被分割的输入数组
  • indices_or_sections:可以是整数,表明要从输入数组创建的,等大小的子数组的数量。如果此参数是一维数组,则其元素表明要创建新子数组的点。
  • axis:默认为 0
import numpy as np
a = np.arange(9)
print(a)
print('将数组分为三个大小相等的子数组:')
b = np.split(a,3)
print(b)
print('将数组在一维数组中表明的位置分割:')
b = np.split(a,[4,7])
print(b)

输出结果:

[0 1 2 3 4 5 6 7 8]
将数组分为三个大小相等的子数组:
[array([0, 1, 2]), 
array([3, 4, 5]), 
array([6, 7, 8])]
将数组在一维数组中表明的位置分割:
[array([0, 1, 2, 3]), 
array([4, 5, 6]), 
array([7, 8])]

2.numpy.hsplit

split()函数的特例,其中轴为 1 表示水平分割。

import numpy as np
a = np.arange(16).reshape(4,4)
print(a)
print('水平分割:')
b = np.hsplit(a,2)
print(b)

输出结果:

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]]
水平分割:
[array([[ 0,  1],
       [ 4,  5],
       [ 8,  9],
       [12, 13]]), 
 array([[ 2,  3],
       [ 6,  7],
       [10, 11],
       [14, 15]])]

3.numpy.vsplit

split()函数的特例,其中轴为 0 表示竖直分割,无论输入数组的维度是什么。

import numpy as np
a = np.arange(16).reshape(4,4)
print(a)
print('竖直分割:')
b = np.vsplit(a,2)
print(b)

输出结果:

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]]
竖直分割:
[array([[0, 1, 2, 3],
       [4, 5, 6, 7]]),
 array([[ 8,  9, 10, 11],
       [12, 13, 14, 15]])]

7.数组元素操作

NumPy中数组操作函数主要如下:

  • resize 返回指定形状的新数组
  • append 将值添加到数组末尾
  • insert 沿指定轴将值插入到指定下标之前
  • delete 返回删掉某个轴的子数组的新数组
  • unique 寻找数组内的唯一元素

1.numpy.resize

函数返回指定大小的新数组。如果新大小大于原始大小,则包含原始数组中的元素的重复副本。如果小于则去掉原始数组的部分数据。该函数接受以下参数:

numpy.resize(arr, shape)

其中:

  • arr:要修改大小的输入数组
  • shape:返回数组的新形状
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print(a)
print(a.shape)
b = np.resize(a, (3,2))
print(b)
print(b.shape)
print('修改第二个数组的大小:')
b = np.resize(a,(3,3))
print(b)
print('修改第三个数组的大小:')
b = np.resize(a,(2,2))
print(b)

输出结果:

[[1 2 3]
 [4 5 6]]
(2, 3)
[[1 2]
 [3 4]
 [5 6]]
(3, 2)
修改第二个数组的大小:
[[1 2 3]
 [4 5 6]
 [1 2 3]]
修改第三个数组的大小:
[[1 2]
 [3 4]]

2.numpy.append

函数在输入数组的末尾添加值。附加操作不是原地的,而是分配新的数组。此外,输入数组的维度必须匹配否则将生成ValueError。函数接受下列函数:

numpy.append(arr, values, axis)

其中:

  • arr:输入数组
  • values:要向arr添加的值,比如和arr形状相同(除了要添加的轴)
  • axis:沿着它完成操作的轴。如果没有提供,两个参数都会被展开。
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print(a)
print(np.append(a, [[7,8,9]],axis = 0))
print(np.append(a, [[5,5,5],[7,8,9]],axis = 1))

输出结果:

[[1 2 3]
 [4 5 6]]
[[1 2 3]
 [4 5 6]
 [7 8 9]]
[[1 2 3 5 5 5]
 [4 5 6 7 8 9]]

3.numpy.insert

函数在给定索引之前,沿给定轴在输入数组中插入值。如果值的类型转换为要插入,则它与输入数组不同。插入没有原地的,函数会返回一个新数组。此外,如果未提供轴,则输入数组会被展开。

insert()函数接受以下参数:

numpy.insert(arr, obj, values, axis)

其中:

  • arr:输入数组
  • obj:在其之前插入值的索引
  • values:要插入的值
  • axis:沿着它插入的轴
import numpy as np
a = np.array([[1,2],[3,4],[5,6]])
print(a)
print(np.insert(a,3,[11,12]))
print(np.insert(a,1,[11],axis = 0))
print(np.insert(a,1,[11],axis = 1))

输出结果:

[[1 2]
 [3 4]
 [5 6]]
[ 1  2  3 11 12  4  5  6]
[[ 1  2]
 [11 11]
 [ 3  4]
 [ 5  6]]
[[ 1 11  2]
 [ 3 11  4]
 [ 5 11  6]]

4.numpy.delete

函数返回从输入数组中删除指定子数组的新数组。与insert()函数的情况一样,如果未提供轴参数,则输入数组将展开。该函 数接受以下参数:

Numpy.delete(arr, obj, axis)

其中:

  • arr:输入数组
  • obj:可以被切片,整数或者整数数组,表明要从输入数组删除的子数组
  • axis:沿着它删除给定子数组的轴
import numpy as np
a = np.array([[1,2],[3,4],[5,6]])
print(a)
print(np.delete(a,5))
print(np.delete(a,1,axis = 1))

输出结果:

[[1 2]
 [3 4]
 [5 6]]
[1 2 3 4 5]
[[1]
 [3]
 [5]]

5.numpy.unique

函数返回输入数组中的去重元素数组。该函数能够返回一个元组,包含去重数组和相关索引的数组。索引的性质取决于函数调用中返回参数的类型。

numpy.unique(arr, return_index, return_inverse, return_counts)

其中:

• arr:输入数组,如果不是一维数组则会展开

• return_index:如果为true,返回输入数组中的元素下标

• return_inverse:如果为true,返回去重数组的下标,它可以用于重构输入数组

• return_counts:如果为true,返回去重数组中的元素在原数组中的出现次数

import numpy as np
a = np.array([5,2,6,2,7,5,6,8,2,9])
u = np.unique(a)
print(u)
u,indices = np.unique(a, return_index = True)
print(u, indices)
u,indices = np.unique(a,return_inverse = True)
print(u, indices)
u,indices = np.unique(a,return_counts = True)
print(u, indices)

输出结果:

[2 5 6 7 8 9][2 5 6 7 8 9] 
[1 0 2 4 7 9][2 5 6 7 8 9] 
[1 0 2 0 3 1 2 4 0 5][2 5 6 7 8 9] 
[3 2 2 1 1 1]

8.NumPy - 字符串函数

以下函数用于对dtype为numpy.string_或numpy.unicode_的数组执行向量 化字符串操作。它们基于 Python 内置库中的标准字符串函数。字符数组类(numpy.char)中定义

import numpy as np
print(np.char.add(['hello'],[' xyz']))
print(np.char.add(['hello', 'hi'],[' abc', ' xyz']))
print(np.char.multiply('Hello ',3))
print(np.char.center('hello', 20,fillchar = '*'))
print(np.char.capitalize('hello world'))
print(np.char.title('hello how are you?'))
print(np.char.lower(['HELLO','WORLD']))
print(np.char.lower('HELLO'))
print(np.char.upper('hello'))
print(np.char.upper(['hello','world']))
print(np.char.split ('hello how are you?'))
print(np.char.split ('YiibaiPoint,Hyderabad,Telangana', sep = ','))
print(np.char.splitlines('hello\nhow are you?'))
print(np.char.splitlines('hello\rhow are you?'))
print(np.char.strip('ashok arora','a'))
print(np.char.strip(['arora','admin','java'],'a'))
print(np.char.join(':','dmy'))
print(np.char.join([':','-'],['dmy','ymd']))
print(np.char.replace ('He is a good boy', 'is', 'was'))
a = np.char.encode('hello', 'cp500')
print(a)
print(np.char.decode(a,'cp500'))

输出结果:

['hello xyz']
['hello abc' 'hi xyz']
Hello Hello Hello 
*******hello********
Hello world
Hello How Are You?
['hello' 'world']
hello
HELLO
['HELLO' 'WORLD']
['hello', 'how', 'are', 'you?']
['YiibaiPoint', 'Hyderabad', 'Telangana']
['hello', 'how are you?']
['hello', 'how are you?']
shok aror
['ror' 'dmin' 'jav']
d:m:y
['d:m:y' 'y-m-d']
He was a good boy
b'\x88\x85\x93\x93\x96'
hello

9.NumPy - 算数函数

NumPy 包含大量的各种数学运算功能。NumPy 提供标准的三角函数,算术运算的函数,复数处理函数等。

  • 三角函数
  • 舍入函数
  • 算数函数

1. NumPy -三角函数

NumPy 拥有标准的三角函数,它为弧度制单位的给定角度返回三角函 数比值。arcsin,arccos,和arctan函数返回给定角度的sin,cos和tan的反三角函数。这些函数的结果可以通过 numpy.degrees()函数通过将弧度制 转换为角度制来验证。

import numpy as np
a = np.array([0,30,45,60,90])
# 通过乘 pi/180 转化为弧度
print(np.sin(a*np.pi/180))
print(np.cos(a*np.pi/180))
print(np.tan(a*np.pi/180))

输出结果:

[ 0.          0.5         0.70710678  0.8660254   1.        ]
[  1.00000000e+00   8.66025404e-01   7.07106781e-01   5.00000000e-01
   6.12323400e-17]
[  0.00000000e+00   5.77350269e-01   1.00000000e+00   1.73205081e+00
   1.63312394e+16]

2.NumPy -舍入函数

numpy.around()这个函数返回四舍五入到所需精度的值

  • numpy.around(a,decimals) – a 输入数组
  • decimals 要舍入的小数位数。默认值为0。如果为负,整数将四舍五入到小数点左侧的位置

numpy.floor() 函数返回不大于输入参数的最大整数。

numpy.ceil() 函数返回输入值的上限,大于输入参数的最小整数

import numpy as np
a = np.array([1.0, 5.55, 123, 0.567, 25.532])
print(np.around(a))
print(np.around(a, decimals=1))
print(np.floor(a))
print(np.ceil(a))

输出结果:

[   1.    6.  123.    1.   26.]
[   1.     5.6  123.     0.6   25.5]
[   1.    5.  123.    0.   25.]
[   1.    6.  123.    1.   26.]

3.NumPy - 算数运算

用于执行算术运算(如add(),subtract(),multiply()和divide())的输入数组必须具有相同的形状或符合数组广播规则。

  • numpy.reciprocal() 函数返回参数逐元素的倒数。
  • numpy.power() 函数将第一个输入数组中的元素作为底数,计算它与第二个输入数组中相应元素的幂。
  • numpy.mod() 函数返回输入数组中相应元素的除法余数
import numpy as np
a = np.array([0.25, 2, 1, 0.2, 100])
print(np.reciprocal(a))
print(np.power(a,2))
a = np.array([10,20,30])
b = np.array([3,5,7])
print(np.mod(a,b))

输出结果:

[ 4.    0.5   1.    5.    0.01]
[  6.25000000e-02   4.00000000e+00   1.00000000e+00
   4.00000000e-02.  1.00000000e+04]
[1 0 2]

4.NumPy - 统计函数

NumPy 有很多有用的统计函数,用于从数组中给定的元素中查找最小,最大,百分标准差和方差等。

numpy.amin() , numpy.amax() 从给定数组中的元素沿指定轴返回最小值和最大值。

numpy.ptp() 函数返回沿轴的值的范围(最大值 - 最小值)。

numpy.percentile() 表示小于这个值得观察值占某个百分比

numpy.percentile(a, q, axis)

  • a 输入数组;
  • q 要计算的百分位数,在 0 ~ 100 之间;
  • axis 沿着它计算百分位数的轴

numpy.median() 返回数据样本的中位数。

numpy.mean() 沿轴返回数组中元素的算术平均值。

numpy.average() 返回由每个分量乘以反映其重要性的因子得到的加权平均值

import numpy as np
a = np.array([[3,7,5],[8,4,3],[2,4,9]])
print(np.amin(a,1))
print(np.amax(a,1))
print(np.ptp(a))
print(np.percentile(a,50))
print(np.median(a))
print(np.mean(a))
print(np.average(a))
print(np.std([1,2,3,4])) #返回数组标准差
print(np.var([1,2,3,4])) #返回数组方差

输出结果:

[3 3 2]
[7 8 9]
7
4.0
4.0
5.0
5.0
1.11803398875
1.25

10.排序、搜索和计数函数

NumPy中提供了各种排序相关功能。

numpy.sort() 函数返回输入数组的排序副本。numpy.sort(a, axis, kind, order)

  • a 要排序的数组;
  • axis 沿着它排序数组的轴,如果没有数组会被展开,沿着最后的轴排序;
  • kind 默认为'quicksort'(快速排序);
  • order 如果数组包含字段,则是要排序的字段

numpy.argsort() 函数对输入数组沿给定轴执行间接排序,并使用指定排序类型返回数据的索引数组。这个索引数组用于构造排序后的数组。

numpy.lexsort() 函数使用键序列执行间接排序。键可以看作是电子表格中的一列。该函数返回一个索引数组,使用它可以获得排序数据。注意,最后一个键恰好是 sort 的主键。

numpy.argmax() 和 numpy.argmin() 这两个函数分别沿给定轴返回最大和最小元素的索引。

numpy.nonzero() 函数返回输入数组中非零元素的索引。

numpy.where() 函数返回输入数组中满足给定条件的元素的索引。

numpy.extract() 函数返回满足任何条件的元素。

import numpy as np
a = np.array([[3, 7, 3, 1], [9, 7, 8, 7]])
print(np.sort(a))
print(np.argsort(a))
print(np.argmax(a))
print(np.argmin(a))
print(np.nonzero(a))
print(np.where(a > 3))
nm = ('raju', 'anil', 'ravi', 'amar')
dv = ('f.y.', 's.y.', 's.y.', 'f.y.')
print(np.lexsort((dv, nm)))

输出结果:

[[1 3 3 7]
 [7 7 8 9]]
[[3 0 2 1]
 [1 3 2 0]]
4
3
(array([0, 0, 0, 0, 1, 1, 1, 1], dtype=int64), 
array([0, 1, 2, 3, 0, 1, 2, 3], dtype=int64))
(array([0, 1, 1, 1, 1], dtype=int64), 
array([1, 0, 1, 2, 3], dtype=int64))
[3 1 0 2]

11.IO文件操作

ndarray对象可以保存到磁盘文件并从磁盘文件加载。可用的 IO 功能有:

  • numpy.save() 文件将输入数组存储在具有npy扩展名的磁盘文件中。
  • numpy.load() 从npy文件中重建数组。
  • numpy.savetxt()和numpy.loadtxt() 函数以简单文本文件格式存储和获取数组数据。
import numpy as np
a = np.array([1,2,3,4,5])
np.save('outfile',a)
b = np.load('outfile.npy')
print(b)
a = np.array([1,2,3,4,5])
np.savetxt('out.txt',a)
b = np.loadtxt('out.txt')
print(b)

输出结果:

[1 2 3 4 5]
[ 1.  2.  3.  4.  5.]

以上就是Python中11种NumPy高级操作总结的详细内容,更多关于Python NumPy操作的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python中矩阵库Numpy基本操作详解

    NumPy是一个关于矩阵运算的库,熟悉Matlab的都应该清楚,这个库就是让python能够进行矩阵话的操作,而不用去写循环操作. 下面对numpy中的操作进行总结. numpy包含两种基本的数据类型:数组和矩阵. 数组(Arrays) >>> from numpy import * >>> a1=array([1,1,1]) #定义一个数组 >>> a2=array([2,2,2]) >>> a1+a2 #对于元素相加 array(

  • Python Numpy 数组的初始化和基本操作

    Python 是一种高级的,动态的,多泛型的编程语言.Python代码很多时候看起来就像是伪代码一样,因此你可以使用很少的几行可读性很高的代码来实现一个非常强大的想法. 一.基础: Numpy的主要数据类型是ndarray,即多维数组.它有以下几个属性: ndarray.ndim:数组的维数 ndarray.shape:数组每一维的大小 ndarray.size:数组中全部元素的数量 ndarray.dtype:数组中元素的类型(numpy.int32, numpy.int16, and num

  • Python数据清洗工具之Numpy的基本操作

    1. Numpy(Numberical Python) Anaconda中已经集成了NumPy,可以直接使用.如果想要自行安装的话,可以使用流行的Python 包安装程序 pip 来安装 NumPy,目前使用的是Anaconde的环境进行学习和使用这个库 1.1 这库的安装方法 CMD :pip install numpy 或者使用清华源的镜像库:pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple (直接复制可用) 如果想查

  • python使用NumPy文件的读写操作

    一.使用NumPy读写文本文件 在数据分析中,经常需要从文件中读取数据或将数据写入文件,常用的存储文件的格式有文本文件.CSV格式文件.二进制格式文件和多维数据文件等. 1.将1维或2维数组写入TXT文件或CSV格式文件 在NumPy中,使用savetxt()函数可以将1维或2维数组写入后缀名为txt或csv的文件.函数格式为: **numpy.savetxt(fname,array,fmt='%.18e',delimiter=None,newline='\n', header='', foot

  • 新手入门学习python Numpy基础操作

    NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.是在学习机器学习.深度学习之前应该掌握的一个非常基本且实用的Python库. 导入库,创建数组 import numpy as np a = np.arraya = np.array([0, 1, 2, 3, 4] ) #使用array函数 a = np.array([[11, 12, 13, 14, 15], [16, 17, 18, 1

  • Python中11种NumPy高级操作总结

    目录 1.数组上的迭代 2.数组形状修改函数 1.ndarray.reshape 2.ndarray.flat 3.ndarray.flatten 3.数组翻转操作函数 1.numpy.transpose 2. numpy.ndarray.T 3.numpy.swapaxes 4.numpy.rollaxis 4.数组修改维度函数 1.numpy.broadcast_to 2.numpy.expand_dims 3.numpy.squeeze 5.数组的连接操作 1.numpy.stack 2.

  • python中sqllite插入numpy数组到数据库的实现方法

    sqllite里面并没有与numpy的array类型对应的数据类型,通常我们都需要将数组转换为text之后再插入到数据库中,或者以blob类型来存储数组数据,除此之外我们还有另一种方法,能够让我们直接以array来插入和查询数据,实现代码如下 import sqlite3 import numpy as np import io def adapt_array(arr): out = io.BytesIO() np.save(out, arr) out.seek(0) return sqlite

  • 浅谈Python中range与Numpy中arange的比较

    本文先比较range与arange的异同点,再详细介绍各自的用法,然后列举了几个简单的示例,最后对xrange进行了简单的说明. 1. range与arange的比较 (1)相同点:A.参数的可选性.默认缺省值是一样的:B.结果均包括开始值,不包括结束值: C.arange的参数为整数是,与range函数等价:D.都具备索引查找.要素截取等操作. (2)不同点:A.range函数的参数只能为整数,arange的参数为数值型,包括整数和浮点数: B.输出的数据类型不同,range的输出为列表(li

  • python中找出numpy array数组的最值及其索引方法

    在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之的是where,其又是list没有的 首先我们可以得到array在全局和每行每列的最大值(最小值同理) >>> a = np.arange(9).reshape((3,3)) >>> a array([[0, 1, 2], [9, 4, 5], [6, 7, 8]]) >>&

  • Python 中几种字符串格式化方法及其比较

    Python 中几种字符串格式化方法及其比较 起步 在 Python 中,提供了很多种字符串格式化的方式,分别是 %-formatting.str.format 和 f-string .本文将比较这几种格式化方法. %- 格式化 这种格式化方式来自于 C 语言风格的 sprintf 形式: name = "weapon" "Hello, %s." % name C 语言的给实话风格深入人心,通过 % 进行占位. 为什么 %-formatting不好 不好的地方在于,

  • Python中五种列表拷贝的方法

    目录 1. 赋值操作 2. 使用copy操作 3. 使用list()构造函数 4. 使用索引 5. 列表生成式 6 总结 1. 赋值操作 最容易想到的就是我们可以使用赋值操作来直接复制列表, 代码如下: copied_list=original_list 此时,original_list 和copyed_list 都将指向同一个列表对象. 举例如下: original_list=[1,2,3] #Copying list using assignment operation copied_lis

  • python中3种等待元素出现的方法总结

    目录 前言 一.强制等待 二.隐性等待 三.显性等待 总结 前言 在做web或app的自动化测试经过会出现找不到元素而报错的情况,很多时候是因为元素 还没有被加载出来,查找的代码就已经被执行了,自然就找不到元素了.那么我可以用等待 元素加载完成后再执行查找元素的code. Python里有三种等待的方式: 一.强制等待 Sleep(54) 这个方法在time模块,使用时通过from time import sleep导入 比如: Sleep(10) #表示强行等待10s再执行下一句代码 Driv

  • python中三种输出格式总结(%,format,f-string)

    目录 python的三种输出格式 1. % (不推荐使用) 2. format 3. f-string 对比 总结 python的三种输出格式 环境:pycharm + python3.8 1. % (不推荐使用) 格式: 格式字符串% (输出项1,输出项2,…输出项n). %c 字符 %s 字符串 %d 带符号的整数(10) %o 带符号的整数(8) %x或者 %X 带符号的整数(16) %f 或者 %F 浮点数字 使用: 案例一 num1 = 20 num2 = 30 print('num1

  • Python中关于字典的常规操作范例以及介绍

    目录 1.字典的介绍 2.访问字典的值 (一)根据键访问值 (二)通过get()方法访问值 3.修改字典的值 4.添加字典的元素(键值对) 5.删除字典的元素 6.字典常见操作 1.len 测量字典中键值对的个数 2. keys 返回一个包含字典所有KEY的列表 3. values 返回一个包含字典所有value的列表 4. items 返回一个包含所有(键,值)元祖的列表 5. 遍历字典的key(键) 6. 遍历字典的value(值) 7. 遍历字典的items(元素) 8. 遍历字典的ite

  • Python中五种实现字符串反转的方法

    目录 前言 方法1 方法2 方法3 方法4 方法5 前言 一道题目是实现一个反转字符串的函数,具体如下: 编写一个函数,其作用是将输入的字符串反转过来.输入字符串以字符数组 char[] 的形式给出. 不要给另外的数组分配额外的空间,你必须原地修改输入数组.使用 O(1) 的额外空间解决这一问题. 我们可以假设数组中的所有字符都是 ASCII 码表中的可打印字符. 示例 1: 输入:["h","e","l","l","

随机推荐