pytorch梯度剪裁方式
我就废话不多说,看例子吧!
import torch.nn as nn outputs = model(data) loss= loss_fn(outputs, target) optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2) optimizer.step()
nn.utils.clip_grad_norm_ 的参数:
parameters – 一个基于变量的迭代器,会进行梯度归一化
max_norm – 梯度的最大范数
norm_type – 规定范数的类型,默认为L2
以上这篇pytorch梯度剪裁方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
opencv python图像梯度实例详解
这篇文章主要介绍了opencv python图像梯度实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x,y方向上的偏导数和偏移构成),有一阶导数(sobel算子)和二阶导数(Laplace算子) # 用于求解图像边缘,一阶的极大值,二阶的零点
-
基于梯度爆炸的解决方法:clip gradient
1. 梯度爆炸的影响 在一个只有一个隐藏节点的网络中,损失函数和权值w偏置b构成error surface,其中有一堵墙,如下所示 损失函数每次迭代都是每次一小步,但是当遇到这堵墙时,在墙上的某点计算梯度,梯度会瞬间增大,指向某处不理想的位置.如果我们使用缩放,可以把误导控制在可接受范围内,如虚线箭头所示 2. 解决梯度爆炸问题的方法 通常会使用一种叫"clip gradients "的方法. 它能有效地权重控制在一定范围之内. 算法步骤如下. 首先设置一个梯度阈值:clip_grad
-
pytorch对梯度进行可视化进行梯度检查教程
目的: 在训练神经网络的时候,有时候需要自己写操作,比如faster_rcnn中的roi_pooling,我们可以可视化前向传播的图像和反向传播的梯度图像,前向传播可以检查流程和计算的正确性,而反向传播则可以大概检查流程的正确性. 实验 可视化rroi_align的梯度 1.pytorch 0.4.1及之前,需要声明需要参数,这里将图片数据声明为variable im_data = Variable(im_data, requires_grad=True) 2.进行前向传播,最后的loss映射为
-
有关Tensorflow梯度下降常用的优化方法分享
1.tf.train.exponential_decay() 指数衰减学习率: #tf.train.exponential_decay(learning_rate, global_steps, decay_steps, decay_rate, staircase=True/False): #指数衰减学习率 #learning_rate-学习率 #global_steps-训练轮数 #decay_steps-完整的使用一遍训练数据所需的迭代轮数:=总训练样本数/batch #decay_rate-
-
tensorflow求导和梯度计算实例
1. 函数求一阶导 import tensorflow as tf tf.enable_eager_execution() tfe=tf.contrib.eager from math import pi def f(x): return tf.square(tf.sin(x)) assert f(pi/2).numpy()==1.0 sess=tf.Session() grad_f=tfe.gradients_function(f) print(grad_f(np.zeros(1))[0].n
-
基于TensorFlow中自定义梯度的2种方式
前言 在深度学习中,有时候我们需要对某些节点的梯度进行一些定制,特别是该节点操作不可导(比如阶梯除法如 ),如果实在需要对这个节点进行操作,而且希望其可以反向传播,那么就需要对其进行自定义反向传播时的梯度.在有些场景,如[2]中介绍到的梯度反转(gradient inverse)中,就必须在某层节点对反向传播的梯度进行反转,也就是需要更改正常的梯度传播过程,如下图的 所示. 在tensorflow中有若干可以实现定制梯度的方法,这里介绍两种. 1. 重写梯度法 重写梯度法指的是通过tensorf
-
tensorflow 查看梯度方式
1. 为什么要查看梯度 对于初学者来说网络经常不收敛,loss很奇怪(就是不收敛),所以怀疑是反向传播中梯度的问题 (1)求导之后的数(的绝对值)越来越小(趋近于0),这就是梯度消失 (2)求导之后的数(的绝对值)越来越大(特别大,发散),这就是梯度爆炸 所以说呢,当loss不正常时,可以看看梯度是否处于爆炸,或者是消失了,梯度爆炸的话,网络中的W也会很大,人工控制一下(初始化的时候弄小点等等肯定还有其它方法,只是我不知道,知道的大神也可以稍微告诉我一下~~),要是梯度消失,可以试着用用resn
-
TensorFlow梯度求解tf.gradients实例
我就废话不多说了,直接上代码吧! import tensorflow as tf w1 = tf.Variable([[1,2]]) w2 = tf.Variable([[3,4]]) res = tf.matmul(w1, [[2],[1]]) grads = tf.gradients(res,[w1]) with tf.Session() as sess: tf.global_variables_initializer().run() print sess.run(res) print se
-
pytorch梯度剪裁方式
我就废话不多说,看例子吧! import torch.nn as nn outputs = model(data) loss= loss_fn(outputs, target) optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2) optimizer.step() nn.utils.clip_grad_norm_ 的参数: param
-
人工智能学习Pytorch梯度下降优化示例详解
目录 一.激活函数 1.Sigmoid函数 2.Tanh函数 3.ReLU函数 二.损失函数及求导 1.autograd.grad 2.loss.backward() 3.softmax及其求导 三.链式法则 1.单层感知机梯度 2. 多输出感知机梯度 3. 中间有隐藏层的求导 4.多层感知机的反向传播 四.优化举例 一.激活函数 1.Sigmoid函数 函数图像以及表达式如下: 通过该函数,可以将输入的负无穷到正无穷的输入压缩到0-1之间.在x=0的时候,输出0.5 通过PyTorch实现方式
-
PyTorch: 梯度下降及反向传播的实例详解
线性模型 线性模型介绍 线性模型是很常见的机器学习模型,通常通过线性的公式来拟合训练数据集.训练集包括(x,y),x为特征,y为目标.如下图: 将真实值和预测值用于构建损失函数,训练的目标是最小化这个函数,从而更新w.当损失函数达到最小时(理想上,实际情况可能会陷入局部最优),此时的模型为最优模型,线性模型常见的的损失函数: 线性模型例子 下面通过一个例子可以观察不同权重(w)对模型损失函数的影响. #author:yuquanle #data:2018.2.5 #Study of Linear
-
Pytorch转tflite方式
目标是想把在服务器上用pytorch训练好的模型转换为可以在移动端运行的tflite模型. 最直接的思路是想把pytorch模型转换为tensorflow的模型,然后转换为tflite.但是这个转换目前没有发现比较靠谱的方法. 经过调研发现最新的tflite已经支持直接从keras模型的转换,所以可以采用keras作为中间转换的桥梁,这样就能充分利用keras高层API的便利性. 转换的基本思想就是用pytorch中的各层网络的权重取出来后直接赋值给keras网络中的对应layer层的权重. 转
-
pytorch 梯度NAN异常值的解决方案
pytorch 梯度NAN异常值 gradient 为nan可能原因: 1.梯度爆炸 2.学习率太大 3.数据本身有问题 4.backward时,某些方法造成0在分母上, 如:使用方法sqrt() 定位造成nan的代码: import torch # 异常检测开启 torch.autograd.set_detect_anomaly(True) # 反向传播时检测是否有异常值,定位code with torch.autograd.detect_anomaly(): loss.backward()
-
beam search及pytorch的实现方式
主要记录两种不同的beam search版本 版本一 使用类似层次遍历的方式进行搜索,用队列进行维护,每次循环对当前层的所有节点进行搜索,这些节点每个分别对应topk个节点作为下一层候选节点,取所有候选节点的前tok个作为下一层节点加入队列 bfs with width constraint. 启发式搜索的一种. 属于贪心算法. 如果k -> inf,那么等价于bfs. 从根节点开始(),选取所有可能(大概几万个)里面概率最大的k个,拓展为下一层节点. 然后在这k个节点里面,其可能拓展的所有节点
-
PyTorch梯度裁剪避免训练loss nan的操作
近来在训练检测网络的时候会出现loss为nan的情况,需要中断重新训练,会很麻烦.因而选择使用PyTorch提供的梯度裁剪库来对模型训练过程中的梯度范围进行限制,修改之后,不再出现loss为nan的情况. PyTorch中采用torch.nn.utils.clip_grad_norm_来实现梯度裁剪,链接如下: https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html 训练代码使用示例如下: from torch
-
PyTorch梯度下降反向传播
前言: 反向传播的目的是计算成本函数C对网络中任意w或b的偏导数.一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差.这是流行的梯度下降算法.而偏导数给出了最大上升的方向.因此,关于反向传播算法,我们继续查看下文. 我们向相反的方向迈出了一小步——最大下降的方向,也就是将我们带到成本函数的局部最小值的方向 如题: 意思是利用这个二次模型来预测数据,减小损失函数(MSE)的值. 代码如下: import torch import matplo
-
pytorch损失反向传播后梯度为none的问题
错误代码:输出grad为none a = torch.ones((2, 2), requires_grad=True).to(device) b = a.sum() b.backward() print(a.grad) 由于.to(device)是一次操作,此时的a已经不是叶子节点了 修改后的代码为: a = torch.ones((2, 2), requires_grad=True) c = a.to(device) b = c.sum() b.backward() print(a.grad)
-
PyTorch策略梯度算法详情
目录 0. 前言 1. 策略梯度算法 2. 使用策略梯度算法解决CartPole问题 0. 前言 本节中,我们使用策略梯度算法解决 CartPole 问题.虽然在这个简单问题中,使用随机搜索策略和爬山算法就足够了.但是,我们可以使用这个简单问题来更专注的学习策略梯度算法,并在之后的学习中使用此算法解决更加复杂的问题. 1. 策略梯度算法 策略梯度算法通过记录回合中的所有时间步并基于回合结束时与这些时间步相关联的奖励来更新权重训练智能体.使智能体遍历整个回合然后基于获得的奖励更新策略的技术称为蒙特
随机推荐
- Perl中的符号 ->;、=>; 和 :: 分别表示什么意思?
- JS实现的base64加密、md5加密及sha1加密详解
- DOM属性用法速查手册第1/4页
- Python pip安装lxml出错的问题解决办法
- 如何保持Oracle数据库的优良性能
- AngularJS创建自定义指令的方法详解
- asp.net Datalist控件实现分页功能
- 详解php中 === 的使用
- C#的XML两种代码注释实例说明
- Android开发仿咸鱼键盘DEMO(修改版)
- mysql 时间转换函数的使用方法第1/2页
- js弹出窗口返回值的简单实例
- 几个扩展存储过程使用方法
- C语言实现的猴子吃桃问题算法解决方案
- jQuery复合事件用法示例
- Android自带emoji表情的使用方法详解
- javascript Array对象基础知识小结
- 深入浅析JavaScript函数前面的加号和叹号
- 网站被黑后处理方法及删除批量恶意代码的方法步骤
- Android 保存Fragment 切换状态实例代码