python numpy 矩阵堆叠实例

在实际操作中,遇到了矩阵堆叠的操作,本来想着自己写一个函数,后来想,应该有库函数,于是一阵找寻

import numpy as np
a = np.array([1,2,3])
b = np.array([4,5,6])
np.stack((a,b)) #默认行堆叠

输出:

array([[1, 2, 3],
  [4, 5, 6]])

np.vstack((a, b))

输出:

array([[1, 2, 3],
  [4, 5, 6]])
np.hstack((a, b))

输出:

array([1, 2, 3, 4, 5, 6])

简单解释一下上面的代码:其实主要是一个函数,stack(),这个函数其实包含了各种堆叠方式,我们上面的例子是针对二维矩阵的,其实我们大部分时候的操作都是针对二维矩阵的,为了方便,所以又定义了两个函数vstack()进行垂直的堆叠(vertically ),hstack()进行水平堆叠(horizontally)

函数stack()有个参数,axis,可以设置堆叠的维度,默认是0,其实和vstack()是一个效果,当设置成1的时候,结果如下

np.stack((a,b),axis=1)

输出:

array([[1, 4],
  [2, 5],
  [3, 6]])

从效果看,相当于按照原来a的第二维度,也就是列,一列一列的取出来,按行拼成了一个矩阵。

那么,hstack()的效果能不能利用stack()实现呢?我这里是没有探索出来,欢迎知道的童靴指教,不过hstack()的效果其实和concatenate是一样的

np.concatenate((a,b))
输出:
array([1, 2, 3, 4, 5, 6])

以上这篇python numpy 矩阵堆叠实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python numpy中矩阵的基本用法汇总

    Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的matrix与MATLAB中matrices等价. 直接看一个例子: import numpy as np a = np.mat('1 3;5 7')

  • Numpy与Pytorch 矩阵操作方式

    Numpy 随机矩阵: np.random.randn(d0, d1, d2, ...) 矩阵大小与形状: np.ndarray.size 与 np.dnarray.shape Pytorch 随机矩阵: torch.randn(d0, d1, d2, ...) 添加维度: tensor.unsqueeze(0) 压缩维度: tensor.squeeze(0) 按维度拼接tensor: torch.cat(inputs, dim=0, ...) 维度堆叠: torch.stack(inputs,

  • Python中矩阵创建和矩阵运算方法

    矩阵创建 1.from numpyimport *; a1=array([1,2,3]) a2=mat(a1) 矩阵与方块列表的区别如下: 2.data2=mat(ones((2,4))) 创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int 3.data5=mat(random.randint(2,8,size=(2,5)) 产生一个2-8之间的随机整数矩阵 4.data3=mat(random.rand(2,2)) 这里的random模块使用的是num

  • 对python中矩阵相加函数sum()的使用详解

    假如矩阵A是n*n的矩阵 A.sum()是计算矩阵A的每一个元素之和. A.sum(axis=0)是计算矩阵每一列元素相加之和. A.Sum(axis=1)是计算矩阵的每一行元素相加之和. 以上这篇对python中矩阵相加函数sum()的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • Python numpy 提取矩阵的某一行或某一列的实例

    如下所示: import numpy as np a=np.arange(9).reshape(3,3) a Out[31]: array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) 矩阵的某一行 a[1] Out[32]: array([3, 4, 5]) 矩阵的某一列 a[:,1] Out[33]: array([1, 4, 7]) b=np.eye(3,3) b Out[36]: array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0.,

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • python numpy 矩阵堆叠实例

    在实际操作中,遇到了矩阵堆叠的操作,本来想着自己写一个函数,后来想,应该有库函数,于是一阵找寻 import numpy as np a = np.array([1,2,3]) b = np.array([4,5,6]) np.stack((a,b)) #默认行堆叠 输出: array([[1, 2, 3], [4, 5, 6]]) np.vstack((a, b)) 输出: array([[1, 2, 3], [4, 5, 6]]) np.hstack((a, b)) 输出: array([1

  • Python numpy线性代数用法实例解析

    这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 numpy中线性代数用法 矩阵乘法 >>> import numpy as np >>> x=np.array([[1,2,3],[4,5,6]]) >>> y=np.array([[7,8],[-1,7],[8,9]]) >>> x array([[1, 2, 3], [4

  • python numpy矩阵信息说明,shape,size,dtype

    我就废话不多说了,大家还是直接看例子吧! import numpy as np from numpy import random matrix1 = random.random(size=(2,4)) #矩阵每维的大小 print matrix1.shape #矩阵所有数据的个数 print matrix1.size #矩阵每个数据的类型 print matrix1.dtype 补充知识:Python:查看矩阵大小,查看列表大小 对于Python3.5 查看矩阵大小 >>>import

  • Python NumPy矩阵对象详解及方法

    目录 1. 介绍 2. 创建矩阵 3. 矩阵特有属性 4. 矩阵乘法 1. 介绍 在数学上,矩阵(Matrix)是一个按照矩形阵列排列的负数或实数集合,但在NumPy中,矩阵np.matrix是数组np.ndarray的派生类.这意味着矩阵本质上是   一个数组,拥有数组的所有属性和方法:同时,矩阵又有一些不同于数组的特性和方法首先,矩阵是二维的,不能像数组一样幻化成任意维度,即使展开或切片,返回也是二维的:其次,矩阵和矩阵.矩阵和数组都可以做加减乘除运算,运算结果都是返回矩阵:最后,矩阵的乘法

  • Python numpy矩阵处理运算工具用法汇总

    numpy是用于处理矩阵运算非常好的工具.执行效率高,因为其底层是用的是C语句 使用numpy,需要将数据转换成numpy能识别的矩阵格式. 基本用法: numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0) 名称描述 object数组或嵌套的数列 dtype数组元素的数据类型,可选,例如:int64,int16,int32,float64等,位数越高,精度越高,但也更耗内存.

  • 在python Numpy中求向量和矩阵的范数实例

    np.linalg.norm(求范数):linalg=linear(线性)+algebra(代数),norm则表示范数. 函数参数 x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False) ①x: 表示矩阵(也可以是一维) ②ord:范数类型 向量的范数: 矩阵的范数: ord=1:列和的最大值 ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根 ord=∞:行和的最大值 ③axis:处理类型 axis=1表

  • Python numpy.zero() 初始化矩阵实例

    那就废话不多说,直接上代码吧! new_array = np.zeros((107,4))# 共107行 每行4列 初值为0 >>> new_array = np.zeros((107,4)) >>> new_array array([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0.

  • Python数据处理numpy.median的实例讲解

    numpy模块下的median作用为: 计算沿指定轴的中位数 返回数组元素的中位数 其函数接口为: median(a, axis=None, out=None, overwrite_input=False, keepdims=False) 其中各参数为: a:输入的数组: axis:计算哪个轴上的中位数,比如输入是二维数组,那么axis=0对应行,axis=1对应列: out:用于放置求取中位数后的数组. 它必须具有与预期输出相同的形状和缓冲区长度: overwrite_input:一个bool

随机推荐