PyTorch手写数字数据集进行多分类

目录
  • 一、实现过程
    • 0、导包
    • 1、准备数据
    • 2、设计模型
    • 3、构造损失函数和优化器
    • 4、训练和测试
  • 二、参考文献

一、实现过程

本文对经典手写数字数据集进行多分类,损失函数采用交叉熵,激活函数采用ReLU,优化器采用带有动量的mini-batchSGD算法。

所有代码如下:

0、导包

import torch
from torchvision import transforms,datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

1、准备数据

batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,),(0.3081,))
])

# 训练集
train_dataset = datasets.MNIST(root='G:/datasets/mnist',train=True,download=False,transform=transform)
train_loader = DataLoader(train_dataset,shuffle=True,batch_size=batch_size)
# 测试集
test_dataset = datasets.MNIST(root='G:/datasets/mnist',train=False,download=False,transform=transform)
test_loader = DataLoader(test_dataset,shuffle=False,batch_size=batch_size)

2、设计模型

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)
model = Net()
# 模型加载到GPU上
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

3、构造损失函数和优化器

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5)

4、训练和测试

def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()

        # forward+backward+update
        outputs = model(inputs.to(device))
        loss = criterion(outputs, target.to(device))
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d,%d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images.to(device))
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted.cpu() == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))

for epoch in range(10):
    train(epoch)
    test()

运行结果如下:

[1,300] loss: 2.166
[1,600] loss: 0.797
[1,900] loss: 0.405
Accuracy on test set: 90 %
[2,300] loss: 0.303
[2,600] loss: 0.252
[2,900] loss: 0.218
Accuracy on test set: 94 %
[3,300] loss: 0.178
[3,600] loss: 0.168
[3,900] loss: 0.142
Accuracy on test set: 95 %
[4,300] loss: 0.129
[4,600] loss: 0.119
[4,900] loss: 0.110
Accuracy on test set: 96 %
[5,300] loss: 0.094
[5,600] loss: 0.092
[5,900] loss: 0.091
Accuracy on test set: 96 %
[6,300] loss: 0.077
[6,600] loss: 0.070
[6,900] loss: 0.075
Accuracy on test set: 97 %
[7,300] loss: 0.061
[7,600] loss: 0.058
[7,900] loss: 0.058
Accuracy on test set: 97 %
[8,300] loss: 0.043
[8,600] loss: 0.051
[8,900] loss: 0.050
Accuracy on test set: 97 %
[9,300] loss: 0.041
[9,600] loss: 0.038
[9,900] loss: 0.043
Accuracy on test set: 97 %
[10,300] loss: 0.030
[10,600] loss: 0.032
[10,900] loss: 0.033
Accuracy on test set: 97 %

二、参考文献

到此这篇关于PyTorch手写数字数据集进行多分类的文章就介绍到这了,更多相关python多分类内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch 多分类问题,计算百分比操作

    二分类或分类问题,网络输出为二维矩阵:批次x几分类,最大的为当前分类,标签为one-hot型的二维矩阵:批次x几分类 计算百分比有numpy和pytorch两种实现方案实现,都是根据索引计算百分比,以下为具体二分类实现过程. pytorch out = torch.Tensor([[0,3], [2,3], [1,0], [3,4]]) cond = torch.Tensor([[1,0], [0,1], [1,0], [1,0]]) persent = torch.mean(torch.eq(

  • PyTorch: Softmax多分类实战操作

    多分类一种比较常用的做法是在最后一层加softmax归一化,值最大的维度所对应的位置则作为该样本对应的类.本文采用PyTorch框架,选用经典图像数据集mnist学习一波多分类. MNIST数据集 MNIST 数据集(手写数字数据集)来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口

  • PyTorch手写数字数据集进行多分类

    目录 一.实现过程 0.导包 1.准备数据 2.设计模型 3.构造损失函数和优化器 4.训练和测试 二.参考文献 一.实现过程 本文对经典手写数字数据集进行多分类,损失函数采用交叉熵,激活函数采用ReLU,优化器采用带有动量的mini-batchSGD算法. 所有代码如下: 0.导包 import torch from torchvision import transforms,datasets from torch.utils.data import DataLoader import tor

  • 详解PyTorch手写数字识别(MNIST数据集)

    MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.虽然网上的案例比较多,但还是要自己实现一遍.代码采用 PyTorch 1.0 编写并运行. 导入相关库 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, t

  • PyTorch简单手写数字识别的实现过程

    目录 一.包导入及所需数据的下载 关于数据集引入的改动 二.进行数据处理变换操作 三.数据预览测试和数据装载 四.模型搭建和参数优化 关于模型搭建的改动 总代码: 测试 总结 具体流程: ① 导入相应的包,下载训练集和测试集对应需要的图像数据. ②进行图像数据的变换,使图像数据转化成pytorch可识别并计算的张量数据类型 ③数据预览测试和数据装载 ④模型搭建和参数优化 ⑤总代码 ⑥测试 一.包导入及所需数据的下载 torchvision包的主要功能是实现数据的处理.导入.预览等,所以如果需要对

  • PyTorch实现手写数字识别的示例代码

    目录 加载手写数字的数据 数据加载器(分批加载) 建立模型 模型训练 测试集抽取数据,查看预测结果 计算模型精度 自己手写数字进行预测 加载手写数字的数据 组成训练集和测试集,这里已经下载好了,所以download为False import torchvision # 是否支持gpu运算 # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # print(device) # print(torch.cud

  • PyTorch实现手写数字的识别入门小白教程

    目录 手写数字识别(小白入门) 1.数据预处理 2.训练模型 3.测试模型,保存 4.调用模型 5.完整代码 手写数字识别(小白入门) 今早刚刚上了节实验课,关于逻辑回归,所以手有点刺挠就想发个博客,作为刚刚入门的小白,看到代码运行成功就有点小激动,这个实验没啥含金量,所以路过的大牛不要停留,我怕你们吐槽哈哈. 实验结果: 1.数据预处理 其实呢,原理很简单,就是使用多变量逻辑回归,将训练28*28图片的灰度值转换成一维矩阵,这就变成了求784个特征向量1个标签的逻辑回归问题.代码如下: #数据

  • 超详细PyTorch实现手写数字识别器的示例代码

    前言 深度学习中有很多玩具数据,mnist就是其中一个,一个人能否入门深度学习往往就是以能否玩转mnist数据来判断的,在前面很多基础介绍后我们就可以来实现一个简单的手写数字识别的网络了 数据的处理 我们使用pytorch自带的包进行数据的预处理 import torch import torchvision import torchvision.transforms as transforms import numpy as np import matplotlib.pyplot as plt

  • Python-OpenCV实战:利用 KNN 算法识别手写数字

    目录 前言 手写数字数据集 MNIST 介绍 基准模型--利用 KNN 算法识别手写数字 改进模型1--参数 K 对识别手写数字精确度的影响 改进模型2--训练数据量对识别手写数字精确度的影响 改进模型3--预处理对识别手写数字精确度的影响 改进模型4--使用高级描述符作为图像特征提高 KNN 算法准确率 完整代码 相关链接 前言 K-最近邻 (k-nearest neighbours, KNN) 是监督学习中最简单的算法之一,KNN 可用于分类和回归问题,在博文<Python OpenCV实战

  • Python利用 SVM 算法实现识别手写数字

    目录 前言 使用 SVM 进行手写数字识别 参数 C 和 γ 对识别手写数字精确度的影响 完整代码 前言 支持向量机 (Support Vector Machine, SVM) 是一种监督学习技术,它通过根据指定的类对训练数据进行最佳分离,从而在高维空间中构建一个或一组超平面.在博文<OpenCV-Python实战(13)--OpenCV与机器学习的碰撞>中,我们已经学习了如何在 OpenCV 中实现和训练 SVM 算法,同时通过简单的示例了解了如何使用 SVM 算法.在本文中,我们将学习如何

  • pytorch 利用lstm做mnist手写数字识别分类的实例

    代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式. # -*- coding: utf-8 -*- """ Created on Tue Oct 9 08:53:25 2018 @author: www """ import sys sys.path.append('..') import torch import datetime from torch.autograd import Variable from torch im

  • PyTorch实现MNIST数据集手写数字识别详情

    目录 一.PyTorch是什么? 二.程序示例 1.引入必要库 2.下载数据集 3.加载数据集 4.搭建CNN模型并实例化 5.交叉熵损失函数损失函数及SGD算法优化器 6.训练函数 7.测试函数 8.运行 三.总结 前言: 本篇文章基于卷积神经网络CNN,使用PyTorch实现MNIST数据集手写数字识别. 一.PyTorch是什么? PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级功能: 强大的 GPU 加速 Tensor 计算(类似 nump

随机推荐