利用Python绘制MySQL数据图实现数据可视化

本教程的所有Python代码可以在网上的IPython notebook中获取。

考虑在公司里使用Plotly?可以看一下Plotly的on-premises企业版。(注:On-premises是指软件运行在工作场所或公司内部,详见维基百科

注意操作系统:尽管Windows或Mac用户也可以跟随本文操作,但本文假定你使用的是Ubuntu系统(Ubuntu桌面版或Ubuntu服务器版)。如果你没有Ubuntu Server,你可以通过Amazon的Web服务建立一个云平台(阅读这份教程的前半部分)。如果你用的是Mac,我们推荐你购买并下载VMware Fusion,在上面安装Ubuntu桌面版。你也可以通过Zareason购买一台便宜的预装Ubuntu桌面版/服务器版的笔记本或服务器。

使用Python读取MySQL的数据并绘图很简单,所有你需要的工具都可以免费下载。本文会展示怎么做。如果你遇到问题或者卡住了,可以给feedback@plot.ly发送邮件,也可以在本文下面评论,或者在tweeter上@plotlygraphs。
第1步:确保MySQL已安装且在运行

首先,你需要有一台安装了MySQL的计算机或服务器。你可以通过以下方法检查MySQL是否安装:打开控制台,输入“mysql”,如果你收到MySQL无法连接的错误,这意味着MySQL安装了,但是没有运行。在命令行或“Terminal”中,尝试输入sudo /etc/init.d/mysql start并按回车来启动MySQL。

如果MySQL没有安装,不要失望。在Ubuntu中下载并安装只需一行命令:

shell> sudo apt-get install mysql-server --fix-missing

安装过程中会让你输入一个密码。安装结束后,你可以在终端中键入以下命令进入MySQL控制台:

shell> sudo mysql -uroot -p

输入“exit”就可以退出MySQL控制台,。

本教程使用MySQL经典的“world”样例数据库。如果你想跟随我们的步骤,可以在MySQL文档中心下载world数据库。你也可以在命令行中使用wget下载:

shell> wget http://downloads.mysql.com/docs/world.sql.zip

然后解压文件:

shell> unzip world.sql.zip

(如果unzip没有安装,输入sudo apt-get install unzip安装)

现在需要把world数据库导入到MySQL,启动MySQL控制台:

shell> sudo mysql -uroot -p

进入控制台后,通过以下MySQL命令使用world.sql文件创建world数据库:

mysql> CREATE DATABASE world;
mysql> USE world;
mysql> SOURCE /home/ubuntu/world.sql;

(在上面的SOURCE命令中,确保将路径改为你自己world.sql所在目录)。
上述操作说明摘自MySQL文档中心
第2步:使用Python连接MySQL

使用Python连接MySQL很简单。关键得安装python的MySQLdb包。首先需要安装两项依赖:

shell> sudo apt-get install python-dev
shell> sudo apt-get install libmysqlclient-dev

然后安装Python的MySQLdb包:

shell> sudo pip install MySQL-python

现在,启动Python并导入MySQLdb。你可以在命令行或者IPython notebook中执行:

shell> python
>>> import MySQLdb

创建MySQL中world数据库的连接:

>>> conn = MySQLdb.connect(host="localhost", user="root", passwd="XXXX", db="world")

cursor是用来创建MySQL请求的对象。

>>> cursor = conn.cursor()

我们将在Country表中执行查询。
第3步:Python中执行MySQL查询

cursor对象使用MySQL查询字符串执行查询,返回一个包含多个元组的元组——每行对应一个元组。如果你刚接触MySQL语法和命令,在线的MySQL参考手册是一个很不错的学习资源。

>>> cursor.execute('select Name, Continent, Population, LifeExpectancy, GNP from Country');
>>> rows = cursor.fetchall()

rows,也就是查询的结果,是一个包含多个元组的元组,像下面这样:

使用Pandas的DataFrame来处理每一行要比使用一个包含元组的元组方便。下面的Python代码片段将所有行转化为DataFrame实例:

>>> import pandas as pd
>>> df = pd.DataFrame( [[ij for ij in i] for i in rows] )
>>> df.rename(columns={0: 'Name', 1: 'Continent', 2: 'Population', 3: 'LifeExpectancy', 4:'GNP'}, inplace=True);
>>> df = df.sort(['LifeExpectancy'], ascending=[1]);

完整的代码可以参见IPython notebook
第4步:使用Plotly绘制MySQL数据

现在,MySQL的数据存放在Pandas的DataFrame中,可以轻松地绘图。下面的代码用来绘制国家GNP(国民生产总值)VS平均寿命的图,鼠标悬停的点会显示国家名称。确保你已经下载了Plotly的Python库。如果没有,你可以参考一下它的入门指南

import plotly.plotly as py
from plotly.graph_objs import *

trace1 = Scatter(
   x=df['LifeExpectancy'],
   y=df['GNP'],
   text=country_names,
   mode='markers'
)
layout = Layout(
   xaxis=XAxis( title='Life Expectancy' ),
   yaxis=YAxis( type='log', title='GNP' )
)
data = Data([trace1])
fig = Figure(data=data, layout=layout)
py.iplot(fig, filename='world GNP vs life expectancy')

完整的代码在这份IPython notebook中。下面是作为一个iframe嵌入的结果图:

利用Plotly的Python用户指南中的气泡图教程,我们可以用相同的MySQL数据绘制一幅气泡图,气泡大小表示人口的多少,气泡的颜色代表不同的大洲,鼠标悬停会显示国家名称。下面显示的是作为一个iframe嵌入的气泡图。

创建这个图表以及这个博客中的所有python代码都可以从这个IPython notebook中拷贝。

(0)

相关推荐

  • 使用python绘制人人网好友关系图示例

    代码依赖:networkx matplotlib 复制代码 代码如下: #! /bin/env python# -*- coding: utf-8 -*- import urllibimport urllib2import cookielibimport reimport cPickle as pimport networkx as nximport matplotlib.pyplot as plt __author__ = """Reverland (lhtlyy@gmai

  • 利用Python绘制数据的瀑布图的教程

    介绍 对于绘制某些类型的数据来说,瀑布图是一种十分有用的工具.不足为奇的是,我们可以使用Pandas和matplotlib创建一个可重复的瀑布图. 在往下进行之前,我想先告诉大家我指代的是哪种类型的图表.我将建立一个维基百科文章中描述的2D瀑布图. 这种图表的一个典型的用处是显示开始值和结束值之间起"桥梁"作用的+和-的值.因为这个原因,财务人员有时会将其称为一个桥梁.跟我之前所采用的其他例子相似,这种类型的绘图在Excel中不容易生成,当然肯定有生成它的方法,但是不容易记住. 关于瀑

  • python绘图方法实例入门

    本文实例讲述了python绘图方法.分享给大家供大家参考.具体如下: # -*- coding:utf-8 -*- import matplotlib.pyplot as plt def main(): # 颜色列表 colorList = ['b','g','r','c','m','y','k'] # 共用的横坐标 threadList = [1,2,4,8,10] # 设置横坐标和纵坐标的名称 plt.xlabel('threads') plt.ylabel('concurrent') #

  • 使用Python绘制图表大全总结

    在使用Python绘制图表前,我们需要先安装两个库文件numpy和matplotlib. Numpy是Python开源的数值计算扩展,可用来存储和处理大型矩阵,比Python自身数据结构要高效:matplotlib是一个Python的图像框架,使用其绘制出来的图形效果和MATLAB下绘制的图形类似. 下面我通过一些简单的代码介绍如何使用 Python绘图. 一.图形绘制 直方图 importmatplotlib.pyplotasplt importnumpyasnp mu=100 sigma=2

  • 用Python代码来绘制彭罗斯点阵的教程

    这里是显示彭罗斯点阵的Python的脚本.是的,这是可以运行的有效Phython代码. 译注:彭罗斯点阵,物理学术语.上世纪70年代英国数学家彭罗斯第一次提出了这个概念,称为彭罗斯点阵(Pen-rose tiles). _ =\ """if! 1:"e,V=100 0,(0j-1)**-.2; v,S=.5/ V.real, [(0,0,4 *e,4*e* V)];w=1 -v"def! E(T,A, B,C):P ,Q,R=B*w+ A*v,B*w+C

  • python使用matplotlib绘制折线图教程

    matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. 在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不

  • 使用Python标准库中的wave模块绘制乐谱的简单教程

    在本文中,我们将探讨一种简洁的方式,以此来可视化你的MP3音乐收藏.此方法最终的结果将是一个映射你所有歌曲的正六边形网格地图,其中相似的音轨将处于相邻的位置.不同区域的颜色对应不同的音乐流派(例如:古典.嘻哈.重摇滚).举个例子来说,下面是我所收藏音乐中三张专辑的映射图:Paganini的<Violin Caprices>.Eminem的<The Eminem Show>和Coldplay的<X&Y>. 为了让它更加有趣(在某些情况下更简单),我强加了一些限制.

  • Python使用pylab库实现画线功能的方法详解

    本文实例讲述了Python使用pylab库实现画线功能的方法.分享给大家供大家参考,具体如下: pylab 提供了比较强大的画图功能,但是函数和参数都比较多,很容易搞混.我们平常使用最多的应该是画线了.下面,简单的对一些常用的划线函数进行了封装,方便使用. # -*- coding: utf-8 -*- import pylab import random class MiniPlotTool : ''' A mini tool to draw lines using pylab ''' bas

  • python海龟绘图实例教程

    本文以实例形式介绍了python turtle模块即海龟绘图的使用方法,对于需要进行图形编程的朋友相信会有一定的借鉴价值. python turtle模块简介:  python2.6版本中引入的一个简单的绘图工具,叫做海龟绘图(Turtle Graphics) 1.使用海龟绘图首先我们需要导入turtle,如下所示: from turtle import * #将turtle中的所有方法导入 2.海龟绘图属性: (1)位置  (2)方向  (3)画笔(画笔的属性,颜色.画线的宽度) 3.操纵海龟

  • 使用python绘制常用的图表

    本文介绍如果使用python汇总常用的图表,与Excel的点选操作相比,用python绘制图表显得比较比较繁琐,尤其提现在对原始数据的处理上.但两者在绘制图表过程中的思路大致相同,Excel中能完成的工作python大多也能做到.为了更清晰的说明使用python绘制图表的过程,我们在汇总图表的代码中进行注解,说明每一行代码的具体作用.并在文章的最后给出了自定义字体和图表配色的对应表. 准备工作 import numpy as np import pandas as pd #导入图表库以进行图表绘

随机推荐