python Pandas库read_excel()参数实例详解

目录
  • 1.read_excel函数原型
  • 2.参数使用举例
    • 2.1. io和sheet_name参数
    • 2.2. header参数
    • 2.3. skipfooter参数
    • 2.5. parse_dates参数
    • 2.6. converters参数
    • 2.7. na_values参数
    • 2.8. usecols参数
  • 总结

Pandas read_excel()参数使用详解

1.read_excel函数原型

def read_excel(io,
               sheet_name=0,
               header=0,
               names=None,
               index_col=None,
               parse_cols=None,
               usecols=None,
               squeeze=False,
               dtype=None,
               engine=None,
               converters=None,
               true_values=None,
               false_values=None,
               skiprows=None,
               nrows=None,
               na_values=None,
               keep_default_na=True,
               na_filter=True,
               verbose=False,
               parse_dates=False,
               date_parser=None,
               thousands=None,
               comment=None,
               skip_footer=0,
               skipfooter=0,
               convert_float=True,
               mangle_dupe_cols=True,
               **kwds)

参数说明:

2.参数使用举例

2.1. io和sheet_name参数

【例1】通过io和sheet_name读取Excel表

records.xlsx内容:

date	val	percent
2014/3/1	0.947014982	10%
2014/6/1	0.746103818	11%
2014/9/1	0.736764841	12%
2014/12/1	0.724937624	13%
2015/3/1	0.85043738	14%
2015/6/1	0.332503212	15%
2015/9/1	0.75289366	16%
2015/12/1	0.358275104	17%
2016/3/1	0.077250716	18%
2016/6/1	0.436182277	19%
2016/9/1	0.424714671	20%
2016/12/1	0.842471104	21%
2017/3/1	0.740035625	22%
2017/6/1	0.183588529	23%
2017/9/1	0.143363207	24%

Code:

In [166]: import pandas as pd
     ...: df = pd.read_excel(io="records.xlsx", sheet_name="Sheet1")
     ...: df
     ...:
Out[166]:
         date  val    percent
0    2014/3/1  0.947015  10%
1    2014/6/1  0.746104  11%
2    2014/9/1  0.736765  12%
3   2014/12/1  0.724938  13%
4    2015/3/1  0.850437  14%
5    2015/6/1  0.332503  15%
6    2015/9/1  0.752894  16%
7   2015/12/1  0.358275  17%
8    2016/3/1  0.077251  18%
9    2016/6/1  0.436182  19%
10   2016/9/1  0.424715  20%
11  2016/12/1  0.842471  21%
12   2017/3/1  0.740036  22%
13   2017/6/1  0.183589  23%
14   2017/9/1  0.143363  24%

说明:此处io和sheet_name参数都可以不明确指定,直接使用:

df = pd.read_excel("records.xlsx", "Sheet1")

如果records.xlsx文件只有一张表,或者要读取的数据表为第一张表,sheet_name参数可以省略:

df = pd.read_excel("records.xlsx")

2.2. header参数

【例2】通过header参数指定表头位置

records.xlsx内容:

2020年XXX表
date	val	percent
2014/3/1	0.947014982	10%
2014/6/1	0.746103818	11%
2014/9/1	0.736764841	12%
2014/12/1	0.724937624	13%
2015/3/1	0.85043738	14%
2015/6/1	0.332503212	15%
2015/9/1	0.75289366	16%
2015/12/1	0.358275104	17%
2016/3/1	0.077250716	18%
2016/6/1	0.436182277	19%
2016/9/1	0.424714671	20%
2016/12/1	0.842471104	21%
2017/3/1	0.740035625	22%
2017/6/1	0.183588529	23%
2017/9/1	0.143363207	24%

我们在【例1】的基础上为records.xlsx的“Sheet1”表增加了一行表头说明,如果继续使用【例1】的代码,得到的结果是这样的:

In [169]: import pandas as pd
     ...: df = pd.read_excel("records.xlsx", "Sheet1")
     ...: df
     ...:
Out[169]:
    2020年XXX表  Unnamed: 1 Unnamed: 2
0        date    val           percent
1    2014/3/1    0.947015        10%
2    2014/6/1    0.746104        11%
3    2014/9/1    0.736765        12%
4   2014/12/1    0.724938        13%
5    2015/3/1    0.850437        14%
6    2015/6/1    0.332503        15%
7    2015/9/1    0.752894        16%
8   2015/12/1    0.358275        17%
9    2016/3/1    0.077251        18%
10   2016/6/1    0.436182        19%
11   2016/9/1    0.424715        20%
12  2016/12/1    0.842471        21%
13   2017/3/1    0.740036        22%
14   2017/6/1    0.183589        23%
15   2017/9/1    0.143363        24%

这样得到的列标及数据都不是我们想要的,这种情况下就需要通过header参数来指定表头了,注意到表头是在第2行,根据header参数的说明可知,行号是从0开始计算的,所以header参数应该为1.

Code:

In [170]: import pandas as pd
     ...: df = pd.read_excel("records.xlsx", "Sheet1", header=1)
     ...: df
     ...:
Out[170]:
         date  val    percent
0    2014/3/1  0.947015  10%
1    2014/6/1  0.746104  11%
2    2014/9/1  0.736765  12%
3   2014/12/1  0.724938  13%
4    2015/3/1  0.850437  14%
5    2015/6/1  0.332503  15%
6    2015/9/1  0.752894  16%
7   2015/12/1  0.358275  17%
8    2016/3/1  0.077251  18%
9    2016/6/1  0.436182  19%
10   2016/9/1  0.424715  20%
11  2016/12/1  0.842471  21%
12   2017/3/1  0.740036  22%

2.3. skipfooter参数

【例3】通过skipfooter参数忽略表尾数据

有时我们的数据是从第3方获取到的,往往会在表的末尾添加一行“数据来源:xxx”.如:

2020年XXX表
date	val	percent
2014/3/1	0.947014982	10%
2014/6/1	0.746103818	11%
2014/9/1	0.736764841	12%
2014/12/1	0.724937624	13%
2015/3/1	0.85043738	14%
2015/6/1	0.332503212	15%
2015/9/1	0.75289366	16%
2015/12/1	0.358275104	17%
2016/3/1	0.077250716	18%
2016/6/1	0.436182277	19%
2016/9/1	0.424714671	20%
2016/12/1	0.842471104	21%
2017/3/1	0.740035625	22%
2017/6/1	0.183588529	23%
2017/9/1	0.143363207	24%
数据来源:	XXX	 

这种情况下,可以通过skipfooter参数来忽略该数据。

Code:

In [173]: import pandas as pd
     ...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1)
     ...: df
     ...:
Out[173]:
         date    val  percent
0    2014/3/1  0.947015  10%
1    2014/6/1  0.746104  11%
2    2014/9/1  0.736765  12%
3   2014/12/1  0.724938  13%
4    2015/3/1  0.850437  14%
5    2015/6/1  0.332503  15%
6    2015/9/1  0.752894  16%
7   2015/12/1  0.358275  17%
8    2016/3/1  0.077251  18%
9    2016/6/1  0.436182  19%
10   2016/9/1  0.424715  20%
11  2016/12/1  0.842471  21%
12   2017/3/1  0.740036  22%
13   2017/6/1  0.183589  23%
14   2017/9/1  0.143363  24%
2.4. index_col参数

【例4】通过index_col参数指定DataFrame index

在【例3】中,查看我们读取得到的DataFrame的索引:

In [174]: df.index
Out[174]: RangeIndex(start=0, stop=15, step=1)

它是一个自动添加的整型索引,但如果现在我想要使用“date”列作为索引,可以通过index_col参数指定:

In [175]: import pandas as pd
     ...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1,index_col=0)
     ...: df
     ...:
Out[175]:
            val   percent
date
2014/3/1   0.947015  10%
2014/6/1   0.746104  11%
2014/9/1   0.736765  12%
2014/12/1  0.724938  13%
2015/3/1   0.850437  14%
2015/6/1   0.332503  15%
2015/9/1   0.752894  16%
2015/12/1  0.358275  17%
2016/3/1   0.077251  18%
2016/6/1   0.436182  19%
2016/9/1   0.424715  20%
2016/12/1  0.842471  21%
2017/3/1   0.740036  22%
2017/6/1   0.183589  23%
2017/9/1   0.143363  24%

In [176]: df.index
Out[176]:
Index(['2014/3/1', '2014/6/1', '2014/9/1', '2014/12/1', '2015/3/1', '2015/6/1',
       '2015/9/1', '2015/12/1', '2016/3/1', '2016/6/1', '2016/9/1',
       '2016/12/1', '2017/3/1', '2017/6/1', '2017/9/1'],
      dtype='object', name='date')

或者改成这样:

df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1, index_col=“date”)

2.5. parse_dates参数

查看【例4】index的参数类型:

In [183]: type(df.index[0])
Out[183]: str

发现并不是我们想要的日期类型,而是str。现在我们想把它转换为日期类型,可选的一种方法就是通过parse_dates参数来实现。

【例5】parse_dates参数处理日期

Code:

In [184]: import pandas as pd
     ...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1,i
     ...: ndex_col="date", parse_dates=True)
     ...: df
     ...:
Out[184]:
            val    percent
date
2014-03-01  0.947015  10%
2014-06-01  0.746104  11%
2014-09-01  0.736765  12%
2014-12-01  0.724938  13%
2015-03-01  0.850437  14%
2015-06-01  0.332503  15%
2015-09-01  0.752894  16%
2015-12-01  0.358275  17%
2016-03-01  0.077251  18%
2016-06-01  0.436182  19%
2016-09-01  0.424715  20%
2016-12-01  0.842471  21%
2017-03-01  0.740036  22%
2017-06-01  0.183589  23%
2017-09-01  0.143363  24%

In [185]: type(df.index[0])
Out[185]: pandas._libs.tslibs.timestamps.Timestamp

当parase_date设置为True时,默认将index处理为日期类型。

如果要处理的列不是index列,可以通过parse_dates= "date"来实现。

如果要处理的列包含多个,可以通过parse_dates= [“col1”,“col2”,…]来实现。

2.6. converters参数

在前面几个例子中,我们发现percent列的数据都是xx%这样的表示,且是str类型:

In [187]: type(df["percent"][0])
Out[187]: str

str类型并不是我们所希望的,现在我们希望可以将之转化为float类型,这可以通过converters参数来实现。

【例6】converters参数进行数据类型转换

Code:

In [189]: import pandas as pd
     ...: def convertPercent(val):
     ...:     return float(val.split("%")[0])*0.01
     ...:
     ...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1,i
     ...: ndex_col="date", parse_dates=True, converters={"percent":convertPerce
     ...: nt})
     ...: df
     ...:
Out[189]:
                 val  percent
date
2014-03-01  0.947015     0.10
2014-06-01  0.746104     0.11
2014-09-01  0.736765     0.12
2014-12-01  0.724938     0.13
2015-03-01  0.850437     0.14
2015-06-01  0.332503     0.15
2015-09-01  0.752894     0.16
2015-12-01  0.358275     0.17
2016-03-01  0.077251     0.18
2016-06-01  0.436182     0.19
2016-09-01  0.424715     0.20
2016-12-01  0.842471     0.21
2017-03-01  0.740036     0.22
2017-06-01  0.183589     0.23
2017-09-01  0.143363     0.24

2.7. na_values参数

【例7】na_values参数处理na数据

很多时候,并不是所有的数据都是有效数据,例如下表中2014/12/1和2016/6/1两行的数据均为“–”:

2020年XXX表
date	val	percent
2014/3/1	0.947014982	10%
2014/6/1	0.746103818	11%
2014/9/1	0.736764841	12%
2014/12/1	--	--
2015/3/1	0.85043738	14%
2015/6/1	0.332503212	15%
2015/9/1	0.75289366	16%
2015/12/1	0.358275104	17%
2016/3/1	0.077250716	18%
2016/6/1	--	--
2016/9/1	0.424714671	20%
2016/12/1	0.842471104	21%
2017/3/1	0.740035625	22%
2017/6/1	0.183588529	23%
2017/9/1	0.143363207	24%
数据来源:	XXX	 

这种情况下可以通过na_values参数来处理。

Code

In [191]: import pandas as pd
     ...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1,i
     ...: ndex_col="date", parse_dates=True, na_values="--")
     ...: df
     ...:
Out[191]:
                 val percent
date
2014-03-01  0.947015     10%
2014-06-01  0.746104     11%
2014-09-01  0.736765     12%
2014-12-01       NaN     NaN
2015-03-01  0.850437     14%
2015-06-01  0.332503     15%
2015-09-01  0.752894     16%
2015-12-01  0.358275     17%
2016-03-01  0.077251     18%
2016-06-01       NaN     NaN
2016-09-01  0.424715     20%
2016-12-01  0.842471     21%
2017-03-01  0.740036     22%
2017-06-01  0.183589     23%
2017-09-01  0.143363     24%

2.8. usecols参数

【例8】 usecols参数选择列

当我们只想处理数据表中的某些指定列时,可以通过usecols参数来指定。例如,我只想处理"date"和"val"两列数据,可以这样通过

usecols=["date","val"]

来指定。

Code

In [193]: import pandas as pd
     ...: df = pd.read_excel("records.xlsx", "Sheet1", header=1, skipfooter=1,i
     ...: ndex_col="date", parse_dates=True, na_values="--", usecols=["date","v
     ...: al"])
     ...: df
     ...:
Out[193]:
                 val
date
2014-03-01  0.947015
2014-06-01  0.746104
2014-09-01  0.736765
2014-12-01       NaN
2015-03-01  0.850437
2015-06-01  0.332503
2015-09-01  0.752894
2015-12-01  0.358275
2016-03-01  0.077251
2016-06-01       NaN
2016-09-01  0.424715
2016-12-01  0.842471
2017-03-01  0.740036
2017-06-01  0.183589
2017-09-01  0.143363

总结

到此这篇关于python Pandas库read_excel()参数的文章就介绍到这了,更多相关Pandas库read_excel()参数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 详解pandas库pd.read_excel操作读取excel文件参数整理与实例

    除了使用xlrd库或者xlwt库进行对excel表格的操作读与写,而且pandas库同样支持excel的操作:且pandas操作更加简介方便. 首先是pd.read_excel的参数:函数为: pd.read_excel(io, sheetname=0,header=0,skiprows=None,index_col=None,names=None, arse_cols=None,date_parser=None,na_values=None,thousands=None, convert_fl

  • python Pandas库read_excel()参数实例详解

    目录 1.read_excel函数原型 2.参数使用举例 2.1. io和sheet_name参数 2.2. header参数 2.3. skipfooter参数 2.5. parse_dates参数 2.6. converters参数 2.7. na_values参数 2.8. usecols参数 总结 Pandas read_excel()参数使用详解 1.read_excel函数原型 def read_excel(io, sheet_name=0, header=0, names=None

  • Python pandas库中的isnull()详解

    问题描述 python的pandas库中有一个十分便利的isnull()函数,它可以用来判断缺失值,我们通过几个例子学习它的使用方法. 首先我们创建一个dataframe,其中有一些数据为缺失值. import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(10,99,size=(10,5))) df.iloc[4:6,0] = np.nan df.iloc[5:7,2] = np.nan df.iloc[

  • Python标准库shutil用法实例详解

    本文实例讲述了Python标准库shutil用法.分享给大家供大家参考,具体如下: shutil模块提供了许多关于文件和文件集合的高级操作,特别提供了支持文件复制和删除的功能. 文件夹与文件操作 copyfileobj(fsrc, fdst, length=16*1024): 将fsrc文件内容复制至fdst文件,length为fsrc每次读取的长度,用做缓冲区大小 fsrc: 源文件 fdst: 复制至fdst文件 length: 缓冲区大小,即fsrc每次读取的长度 import shuti

  • Python的命令行参数实例详解

    目录 0.命令行参数 1.sys.argv 2.getopt 2.1getopt.getopt方法 2.2Exceptiongetopt.GetoptError 3.argparse 总结 0. 命令行参数 通常,对于大型项目程序而言,执行程序的一个必要的步骤是正确处理命令行参数,这些命令行参数是提供给包含某种参数化信息的程序或脚本的参数.例如,在计算机视觉项目中,图像和不同类型的文件通常作为命令行参数传递给脚本,用于使程序可以处理不同图片或者不同类型文件. 命令行参数是参数化程序执行的一种常见

  • Python pandas RFM模型应用实例详解

    本文实例讲述了Python pandas RFM模型应用.分享给大家供大家参考,具体如下: 什么是RFM模型 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这3个要素构成了数据分析最好的指标: 最近一次消费 (Recency): 客户最近一次交易时间的间隔.R值越大,表示客户交易距今越久,反之则越近: 消费频率 (Frequency): 客户在最近一段时间内交易的次数.F值越大,表示客户交易越频繁,反之则不够活跃: 消费金额 (Monetary): 客户

  • python open函数中newline参数实例详解

    目录 问题的由来 具体实例 总结 问题的由来 我在读pythoncsv模块文档 看到了这样一句话 如果 csvfile 是文件对象,则打开它时应使用 newline=‘’.其备注:如果没有指定 newline=‘’,则嵌入引号中的换行符将无法正确解析,并且在写入时,使用 \r\n 换行的平台会有多余的 \r 写入.由于 csv 模块会执行自己的(通用)换行符处理,因此指定 newline=‘’ 应该总是安全的. 我就在思考open函数中的newline参数的作用,因为自己之前在使用open函数时

  • python+requests+unittest API接口测试实例(详解)

    我在网上查找了下接口测试相关的资料,大都重点是以数据驱动的形式,将用例维护在文本或表格中,而没有说明怎么样去生成想要的用例, 问题: 测试接口时,比如参数a,b,c,我要先测a参数,有(不传,为空,整形,浮点,字符串,object,过短,超长,sql注入)这些情况,其中一种情况就是一条用例,同时要保证b,c的正确,确保a的测试不受b,c参数的错误影响 解决思路: 符合接口规范的参数可以手动去填写,或者准备在代码库中.那些不符合规范的参数(不传,为空,整形,浮点,字符串,object,过短,超长,

  • python 读写中文json的实例详解

     python 读写中文json的实例详解 读写中文json 想要 读写中文json ,可以使用python中的 json 库可以对json进行操作.读入数据可以使用 json.load. f = file(path) data = json.load(f) json被载入到一个dict类型的object对象中. 使用 json.dump可以输出json.不过输出的文本并不是中文,而是转换为 utf-8的格式.此处需要: output = json.dump(jsonData,targetFil

  • python中的decimal类型转换实例详解

    [Python标准库]decimal--定点数和浮点数的数学运算 作用:使用定点数和浮点数的小数运算.         Python 版本:2.4 及以后版本 decimal 模块实现了定点和浮点算术运算符,使用的是大多数人所熟悉的模型,而不是程序员熟悉的模型,即大多数计算机硬件实现的 IEEE 浮点数运算.Decimal 实例可以准确地表示任何数,对其上取整或下取整,还可以对有效数字个数加以限制. Decimal 小数值表示为 Decimal 类的实例.构造函数取一个整数或字符串作为参数.使用

  • python实现梯度下降算法的实例详解

    python版本选择 这里选的python版本是2.7,因为我之前用python3试了几次,发现在画3d图的时候会报错,所以改用了2.7. 数据集选择 数据集我选了一个包含两个变量,三个参数的数据集,这样可以画出3d图形对结果进行验证. 部分函数总结 symbols()函数:首先要安装sympy库才可以使用.用法: >>> x1 = symbols('x2') >>> x1 + 1 x2 + 1 在这个例子中,x1和x2是不一样的,x2代表的是一个函数的变量,而x1代表

随机推荐