matplotlib之Pyplot模块绘制三维散点图使用颜色表示数值大小

目录
  • 一、摘要
  • 二、代码
  • 三、部分代码解释
    • 1. colormap(颜色)映射设置。
    • 2. 设置三维散点格式
    • 3. 设置侧边colorbar
  • 四、参考
  • 总结

一、摘要

在进行数据可视化时,对于一元函数f(x)=y数据我们可以使用二维平面图显示,x轴表示自变量,y轴表示函数值;对于二元函数f(x,y)=z数据我们也可以使用三维图可视化,x和y轴表示自变量,z轴表示函数值。由于显示设备的局限性,对于三元函数f(x,y,z)=v数据无法通过增加坐标轴的方式可视化,一个可行的方法是使用x、y和z轴表示自变量,使用数据点的颜色表示函数值。

如下图所示:

本文实现了如上图所示的三维散点图,颜色表示数值大小,并增加了可以自定义范围的侧边colorbar。

文章第二部分为实现代码及部分注释,第三部分为对部分代码的详细解释,第四部分为参考的文章链接。

二、代码

import matplotlib.colors
import matplotlib.ticker
import matplotlib.pyplot as plt
import random
# 1.0 初始化数据
# f(x,y,z) = v
# 其中x,y,z为随机数,v=x*y*z
x = [random.randint(0,100) for i in range(0,100)]
y = [random.randint(0,100) for i in range(0,100)]
z = [random.randint(0,100) for i in range(0,100)]
v = [x[i]*y[i]*z[i] for i in range(0,100)]
# 1.1 根据各个点的值(v[]),设置点的颜色值,每个点的颜色使用一个rgb三维的元组表示,例如,若想让点显示为红色,则颜色值为(1.0,0,0)
# 设置各个点的颜色
# 每个点的颜色值按照colormap("seismic",100)进行设计,其中colormap类型为"seismic",共分为100个级别(level)
min_v = min(v)
max_v = max(v)
color = [plt.get_cmap("seismic", 100)(int(float(i-min_v)/(max_v-min_v)*100)) for i in v]

# 2.0 显示三维散点图
# 新建一个figure()
fig = plt.figure()
# 在figure()中增加一个subplot,并且返回axes
ax = fig.add_subplot(111,projection='3d')
# 设置colormap,与上面提到的类似,使用"seismic"类型的colormap,共100个级别
plt.set_cmap(plt.get_cmap("seismic", 100))
# 绘制三维散点,各个点颜色使用color列表中的值,形状为"."
im = ax.scatter(x, y, z, s=100,c=color,marker='.')
# 2.1 增加侧边colorbar
# 设置侧边colorbar,colorbar上显示的值使用lambda方程设置
fig.colorbar(im, format=matplotlib.ticker.FuncFormatter(lambda x,pos:int(x*(max_v-min_v)+min_v)))
# 2.2 增加坐标轴标签
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
# 2.3显示
plt.show()

运行结果如下:

三、部分代码解释

1. colormap(颜色)映射设置。

如上图所示,为了通过颜色表示各个点的值需要设定一个合理的值-点颜色映射关系。本文代码中使用"seismic"colormap,同时设置colormap分为100个level。对应代码为:

color = [plt.get_cmap("seismic", 100)(int(float(i-min_v)/(max_v-min_v)*100)) for i in v]

在代码中plt.get_cmap("seismic",100)会得到一个colormap对象,然后使用plt.get_cmap("seismic",100)(x)可以得到对应x级别的颜色代码值。例如:

a = plt.get_cmap("seismic",100)(0)
b = plt.get_cmap("seismic",100)(100)
print("a:", a)
print("b:", b)

输出结果为:

a: (0.0, 0.0, 0.3, 1.0)
b: (0.5, 0.0, 0.0, 1.0)

表示级别0对应的(r,g,b,alpha)颜色值为(0.0, 0.0, 0.3, 1.0),级别100对应的颜色值为(0.5, 0.0, 0.0, 1.0)

如果需要使用其他类型的colormap,可以通过设置colormap名得到不同的效果,详细参考文章:python matplotlib自定义colorbar颜色条-以及matplotlib中的内置色条。

2. 设置三维散点格式

通过设置plot格式:

ax = fig.add_subplot(111,projection='3d')

再使用scatter()函数绘制三维散点图:

im = ax.scatter(x, y, z, s=100,c=color,marker='.')

其中s=100为设置点的大小、c=color为设置点的颜色,marker='.'为设置点的形状(此处为实心圆点)。

3. 设置侧边colorbar

根据数据的格式,我们需要设置侧边colorbar显示的数值范围,例如,本例中最小值为825,最大值为784179。代码中使用lambda表达式计算显示的值,默认显示的值为[0,1],因此需要使用lambda公式将显示的值调整到[825,784179]。代码如下:

fig.colorbar(im, format=matplotlib.ticker.FuncFormatter(lambda x,pos:int(x*(max_v-min_v)+min_v)))

另外为了使点的颜色与colorbar颜色对应,需要使用

plt.set_cmap(plt.get_cmap("seismic", 100))

使的clormapcolorbar具有同样的类型。

四、参考

[1]. MATLAB scatter 画二维/三维散点图时 用颜色表示数值大小 colorbar

[2]. 三维散点图加colorbar

[3]. 【python图像处理】彩色映射

[4]. matplotlib的colorbar自定义刻度范围

[5]. Python中lambda的使用

总结

到此这篇关于matplotlib之Pyplot模块绘制三维散点图使用颜色表示数值大小的文章就介绍到这了,更多相关Pyplot绘制三维散点图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • matplotlib在python上绘制3D散点图实例详解

    大家可以先参考官方演示文档: 效果图: ''' ============== 3D scatterplot ============== Demonstration of a basic scatterplot in 3D. ''' from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np def randrange(n, vmin, vmax): ''' Helper f

  • python 画三维图像 曲面图和散点图的示例

    用python画图很多是根据z=f(x,y)来画图的,本博文将三个对应的坐标点输入画图: 散点图: import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') X = [1, 1, 2, 2] Y = [3, 4, 4, 3] Z = [1, 2, 1, 1] ax.scatter(X, Y

  • Python Matplotlib实现三维数据的散点图绘制

    一.背景 近期项目即将开展,计划第一步就是实现数据的可视化,所以先学习一下数据展示相关Demo.选用Python2.7与Matplotlib来实现,平台采用Pycharm,值得一提的是,Matplotlib的安装前首先要安装Numpy包,但是在完成Numpy的安装之后,楼主不能在PyCharm平台下进行自动安装,或者CMD中使用类似pip install Matplotlib,参考网上解决方案后采用直接去官网下载相应的安装包直接运行安装到相关目录下.在此就不赘述了. 二. 参考 Python语言

  • python使用matplotlib模块绘制多条折线图、散点图

    今天想直观的展示一下数据就用到了matplotlib模块,之前都是一张图只有一条曲线,现在想同一个图片上绘制多条曲线来对比,实现很简单,具体如下: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import random import matplotlib import matplotlib.pyplot as plt def list2mat(data_list,w): ''' 切片.转置 '

  • Python绘制散点图的教程详解

    少废话,直接上代码 import matplotlib.pyplot as plt import numpy as np # 1. 首先是导入包,创建数据 n = 10 x = np.random.rand(n) * 2# 随机产生10个0~2之间的x坐标 y = np.random.rand(n) * 2# 随机产生10个0~2之间的y坐标 # 2.创建一张figure fig = plt.figure(1) # 3. 设置颜色 color 值[可选参数,即可填可不填],方式有几种 # col

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

  • python绘制散点图并标记序号的方法

    实现二维平面上散点的绘制,并可以给每个散点标记序号或者名称: import numpy as np import matplotlib.pyplot as plt x=[2.3,4.5,3,7,6.5,4,5.3] y=[5,4,7,5,5.3,5.5,6.2] n=np.arange(7) fig,ax=plt.subplots() ax.scatter(x,y,c='r') for i,txt in enumerate(n): ax.annotate(txt,(x[i],y[i])) 以上这

  • python学习之matplotlib绘制散点图实例

    要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

  • matplotlib之Pyplot模块绘制三维散点图使用颜色表示数值大小

    目录 一.摘要 二.代码 三.部分代码解释 1. colormap(颜色)映射设置. 2. 设置三维散点格式 3. 设置侧边colorbar 四.参考 总结 一.摘要 在进行数据可视化时,对于一元函数f(x)=y数据我们可以使用二维平面图显示,x轴表示自变量,y轴表示函数值:对于二元函数f(x,y)=z数据我们也可以使用三维图可视化,x和y轴表示自变量,z轴表示函数值.由于显示设备的局限性,对于三元函数f(x,y,z)=v数据无法通过增加坐标轴的方式可视化,一个可行的方法是使用x.y和z轴表示自

  • 使用matplotlib的pyplot模块绘图的实现示例

    1. 绘制简单图形 使用 matplotlib 的pyplot模块绘制图形.看一个 绘制sin函数曲线的例子. import matplotlib.pyplot as plt import numpy as np # 生成数据 x = np.arange(0, 6, 0.1) # 以0.1为单位,生成0到 6 的数据* y = np.sin(x) # 绘制图形 plt.plot(x,y) plt.show() 这里使用NumPy的arange()方法生成了[0, 0.1, 0.2, - , 5.

  • Python使用Matplotlib绘制三维散点图详解流程

    什么是Matplotlib? Matplotlib是Python中的一个库,用于创建静态和动态动画,并使用其内置函数绘制.它有很多内置特性和内置分析工具,用于分析任何图形或图表. 如果我们想绘制任何三维图形,那么我们可以使用Matplotlib库.当我们有一个巨大的三维变量数据集,我们绘制它的图形时,它看起来非常分散,这被称为3D散点图.我们将使用Matplotlib的matplot3d工具包绘制三维图形. 有一把斧头.函数,它接受坐标X.Y和Z的数据集. 根据我们想要赋予三维图的属性,需要更多

  • matplotlib之pyplot模块实现添加子图subplot的使用

    概述 subplot()函数向当前图像(figure)添加一个子图(Axes),并将该子图设为当前子图.或者将某子图设为当前子图. pyplot.subplot()其实是Figure.add_subplot()的一个封装. 函数的定义签名为:matplotlib.pyplot.subplot(*args, **kwargs) 函数的调用签名为: subplot(nrows, ncols, index, **kwargs) subplot(pos, **kwargs) subplot(**kwar

  • matplotlib之pyplot模块添加文本、注解(text和annotate)

    目录 概述 text函数概述 annotate函数概述 text函数和annotate函数的对比 总结 概述 text函数作用是根据x,y坐标向图像添加文本. annotate函数作用是根据x,y坐标向图像添加文本注解. 两者非常相似,但是又有一定差别. text函数概述 text函数的签名为:matplotlib.pyplot.text(x, y, s, fontdict=None, **kwargs) 参数说明如下: x,y:放置文本的坐标.浮点数.必备参数. s:文本.字符串.必备参数.

  • matplotlib之pyplot模块坐标轴标签设置使用(xlabel()、ylabel())

    在pyplot模块中可以使用xlabel()和ylabel()函数设置x轴y轴的标签.这两个函数的使用方法非常相似. 使用xlabel()设置x轴标签 函数签名为matplotlib.pyplot.xlabel(xlabel, fontdict=None, labelpad=None, *, loc=None, **kwargs) 参数作用及取值如下: xlabel:类型为字符串,即标签的文本. labelpad:类型为浮点数,默认值为None,即标签与坐标轴的距离. loc:取值范围为{'le

  • matplotlib之pyplot模块之标题(title()和suptitle())

    matplotlib 源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)添加链接描述简单比较了matplotlib中的标题. 使用title()设置子图标题 title()可同时在子图中显示中间.左侧.右侧3个标题. 函数签名为matplotlib.pyplot.title(label, fontdict=None, loc=None, pad=None, *, y=None, **kwargs) 参数作用及取值如下: label:类型为字符串,即标题文本. fontdict:类型为字典

  • matplotlib之pyplot模块坐标轴范围设置(autoscale(),xlim(),ylim())

    matplotlib默认根据数据系列自动缩放坐标轴范围.pyplot模块中的autoscale函数可以切换是否自动缩放坐标轴范围,xlim()和ylim()函数可手动设置坐标轴范围. autoscale函数 对于pyplot模块控制坐标轴范围是否自动缩放的函数为autoscale. 函数签名为matplotlib.pyplot.autoscale(enable=True, axis='both', tight=None) 参数作用及取值如下: enable为布尔值,即是否自动缩放. axis取值

  • 基于Matplotlib 调用 pyplot 模块中 figure() 函数处理 figure图形对象

    在 Matplotlib 中,面向对象编程的核心思想是创建图形对象(figure object).通过图形对象来调用其它的方法和属性,这样有助于我们更好地处理多个画布.在这个过程中,pyplot 负责生成图形对象,并通过该对象来添加一个或多个 axes 对象(即绘图区域). Matplotlib 提供了matplotlib.figure图形类模块,它包含了创建图形对象的方法.通过调用 pyplot 模块中 figure() 函数来实例化 figure 对象. 如下所示: from matplot

随机推荐