详解RSA加密算法的原理与Java实现

目录
  • 对称加密和非对称加密
  • RSA加密是什么
  • RSA的加密过程

前几天阿粉刚刚说了这个 MD5 加密的前世今生,因为 MD5 也确实用的人不是很多了,阿粉就不再继续的一一赘述了,今天阿粉想给大家分享的,是非对称加密中的一种,那就是 RSA 加密算法。

对称加密和非对称加密

在说 RSA 之前,我们得先来说说这个什么事对称加密,什么又是非对称加密?

对称加密指的就是加密和解密使用同一个秘钥,所以叫对称加密。对称加密只有一个秘钥,作为私钥。

非对称加密指的是:加密和解密使用不同的秘钥,一把作为公开的公钥,另一把作为私钥。公钥加密的信息,只有私钥才能解密。

那么对称加密和非对称加密之间又有什么区别呢?

  • 对称加密中加密和解密使用的秘钥是同一个;非对称加密中采用两个密钥,一般使用公钥进行加密,私钥进行解密。
  • 对称加密解密的速度比较快,非对称加密和解密花费的时间长、速度相对较慢。
  • 对称加密的安全性相对较低,非对称加密的安全性较高。

今天我们来讲的就是非对称加密中的 RSA 加密。

RSA加密是什么

RSA加密是一种非对称加密。可以在不直接传递密钥的情况下,完成解密。这能够确保信息的安全性,避免了直接传递密钥所造成的被破解的风险。是由一对密钥来进行加解密的过程,分别称为公钥和私钥。

通常情况下个人保存私钥,公钥是公开的(可能同时多人持有)。

虽然私钥是根据公钥决定的, 但是,我们是没有办法根据公钥来推算出私钥来的。

为提高保密强度,RSA密钥至少为500位长。这就使加密的计算量很大。为减少计算量,在传送信息时,常采用传统加密方法与公开密钥加密方法相结合的方式,即信息采用改进的DES或IDEA对话密钥加密,然后使用RSA密钥加密对话密钥和信息摘要。对方收到信息后,用不同的密钥解密并可核对信息摘要

RSA的加密过程

RSA的加密过程其实并不复杂,

(1)A生成一对密钥(公钥和私钥),私钥不公开,A自己保留。公钥为公开的,任何人可以获取。

(2)A传递自己的公钥给B,B用A的公钥对消息进行加密。

(3)A接收到B加密的消息,利用A自己的私钥对消息进行解密。

在这个过程中,只有2次传递过程,第一次是A传递公钥给B,第二次是B传递加密消息给A,即使都被其他人截获,也没有危险性,因为只有A的私钥才能对消息进行解密,防止了消息内容的泄露。

但是大家有没有想过,如果我们的消息被截获了,虽然没有被解密出来,但是如果说我们的公钥被拦截,然后将假指令进行加密,然后传递给A,这不就凉凉了?那数据是不是就不能称之为安全了?

不,RSA还有签名的过程。

签名过程如下:

(1)A生成一对密钥(公钥和私钥),私钥不公开,A自己保留。公钥为公开的,任何人可以获取。

(2)A用自己的私钥对消息加签,形成签名,并将加签的消息和消息本身一起传递给B。

(3)B收到消息后,在获取A的公钥进行验签,如果验签出来的内容与消息本身一致,证明消息是A回复的。

但是问题又来了,虽然截获的消息不能被篡改,但是消息的内容可以利用公钥验签来获得,并不能防止泄露。

那么应该怎么用呢?

其实这就显的并不是很好理解了 我们是不是可以这么设计:

A和B都有一套自己的公钥和私钥,当A要给B发送消息时,先用B的公钥对消息加密,再对加密的消息使用A的私钥加签名,达到既不泄露也不被篡改,更能保证消息的安全性。

那么 Java 代码怎么实现 RSA 的呢?代码如下:

import java.io.ByteArrayOutputStream;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import javax.crypto.Cipher;
import org.apache.commons.codec.binary.Base64;

public class TestRSA {

    /**
     * RSA最大加密明文大小
     */
    private static final int MAX_ENCRYPT_BLOCK = 117;

    /**
     * RSA最大解密密文大小
     */
    private static final int MAX_DECRYPT_BLOCK = 128;

    /**
     * 获取密钥对
     *
     * @return 密钥对
     */
    public static KeyPair getKeyPair() throws Exception {
        KeyPairGenerator generator = KeyPairGenerator.getInstance("RSA");
        generator.initialize(1024);
        return generator.generateKeyPair();
    }

    /**
     * 获取私钥
     *
     * @param privateKey 私钥字符串
     * @return
     */
    public static PrivateKey getPrivateKey(String privateKey) throws Exception {
        KeyFactory keyFactory = KeyFactory.getInstance("RSA");
        byte[] decodedKey = Base64.decodeBase64(privateKey.getBytes());
        PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(decodedKey);
        return keyFactory.generatePrivate(keySpec);
    }

    /**
     * 获取公钥
     *
     * @param publicKey 公钥字符串
     * @return
     */
    public static PublicKey getPublicKey(String publicKey) throws Exception {
        KeyFactory keyFactory = KeyFactory.getInstance("RSA");
        byte[] decodedKey = Base64.decodeBase64(publicKey.getBytes());
        X509EncodedKeySpec keySpec = new X509EncodedKeySpec(decodedKey);
        return keyFactory.generatePublic(keySpec);
    }

    /**
     * RSA加密
     *
     * @param data 待加密数据
     * @param publicKey 公钥
     * @return
     */
    public static String encrypt(String data, PublicKey publicKey) throws Exception {
        Cipher cipher = Cipher.getInstance("RSA");
        cipher.init(Cipher.ENCRYPT_MODE, publicKey);
        int inputLen = data.getBytes().length;
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        int offset = 0;
        byte[] cache;
        int i = 0;
        // 对数据分段加密
        while (inputLen - offset > 0) {
            if (inputLen - offset > MAX_ENCRYPT_BLOCK) {
                cache = cipher.doFinal(data.getBytes(), offset, MAX_ENCRYPT_BLOCK);
            } else {
                cache = cipher.doFinal(data.getBytes(), offset, inputLen - offset);
            }
            out.write(cache, 0, cache.length);
            i++;
            offset = i * MAX_ENCRYPT_BLOCK;
        }
        byte[] encryptedData = out.toByteArray();
        out.close();
        // 获取加密内容使用base64进行编码,并以UTF-8为标准转化成字符串
        // 加密后的字符串
        return new String(Base64.encodeBase64String(encryptedData));
    }

    /**
     * RSA解密
     *
     * @param data 待解密数据
     * @param privateKey 私钥
     * @return
     */
    public static String decrypt(String data, PrivateKey privateKey) throws Exception {
        Cipher cipher = Cipher.getInstance("RSA");
        cipher.init(Cipher.DECRYPT_MODE, privateKey);
        byte[] dataBytes = Base64.decodeBase64(data);
        int inputLen = dataBytes.length;
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        int offset = 0;
        byte[] cache;
        int i = 0;
        // 对数据分段解密
        while (inputLen - offset > 0) {
            if (inputLen - offset > MAX_DECRYPT_BLOCK) {
                cache = cipher.doFinal(dataBytes, offset, MAX_DECRYPT_BLOCK);
            } else {
                cache = cipher.doFinal(dataBytes, offset, inputLen - offset);
            }
            out.write(cache, 0, cache.length);
            i++;
            offset = i * MAX_DECRYPT_BLOCK;
        }
        byte[] decryptedData = out.toByteArray();
        out.close();
        // 解密后的内容
        return new String(decryptedData, "UTF-8");
    }

    /**
     * 签名
     *
     * @param data 待签名数据
     * @param privateKey 私钥
     * @return 签名
     */
    public static String sign(String data, PrivateKey privateKey) throws Exception {
        byte[] keyBytes = privateKey.getEncoded();
        PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(keyBytes);
        KeyFactory keyFactory = KeyFactory.getInstance("RSA");
        PrivateKey key = keyFactory.generatePrivate(keySpec);
        Signature signature = Signature.getInstance("MD5withRSA");
        signature.initSign(key);
        signature.update(data.getBytes());
        return new String(Base64.encodeBase64(signature.sign()));
    }

    /**
     * 验签
     *
     * @param srcData 原始字符串
     * @param publicKey 公钥
     * @param sign 签名
     * @return 是否验签通过
     */
    public static boolean verify(String srcData, PublicKey publicKey, String sign) throws Exception {
        byte[] keyBytes = publicKey.getEncoded();
        X509EncodedKeySpec keySpec = new X509EncodedKeySpec(keyBytes);
        KeyFactory keyFactory = KeyFactory.getInstance("RSA");
        PublicKey key = keyFactory.generatePublic(keySpec);
        Signature signature = Signature.getInstance("MD5withRSA");
        signature.initVerify(key);
        signature.update(srcData.getBytes());
        return signature.verify(Base64.decodeBase64(sign.getBytes()));
    }

    public static void main(String[] args) {
        try {
            // 生成密钥对
            KeyPair keyPair = getKeyPair();
            String privateKey = new String(Base64.encodeBase64(keyPair.getPrivate().getEncoded()));
            String publicKey = new String(Base64.encodeBase64(keyPair.getPublic().getEncoded()));
            System.out.println("私钥:" + privateKey);
            System.out.println("公钥:" + publicKey);
            // RSA加密
            String data = "待加密的文字内容";
            String encryptData = encrypt(data, getPublicKey(publicKey));
            System.out.println("加密后内容:" + encryptData);
            // RSA解密
            String decryptData = decrypt(encryptData, getPrivateKey(privateKey));
            System.out.println("解密后内容:" + decryptData);

            // RSA签名
            String sign = sign(data, getPrivateKey(privateKey));
            // RSA验签
            boolean result = verify(data, getPublicKey(publicKey), sign);
            System.out.print("验签结果:" + result);
        } catch (Exception e) {
            e.printStackTrace();
            System.out.print("加解密异常");
        }
    }
}

同样,当我们看到 RSA 的 Java实现的时候,我们就看到了他的缺点,上来就先定义最大加密明文大小和最大解密密文大小,那么这个 117 是怎么来的?

Java 默认的 RSA 加密实现不允许明文长度超过密钥长度减去 11(单位是字节,也就是 byte)。也就是说,如果我们定义的密钥(我们可以通过 java.security.KeyPairGenerator.initialize(int keysize) 来定义密钥长度)长度为 1024(单位是位,也就是 bit),生成的密钥长度就是 1024位 / 8位/字节 = 128字节,那么我们需要加密的明文长度不能超过 128字节 -11 字节 = 117字节。也就是说,我们最大能将 117 字节长度的明文进行加密,否则会出问题( javax.crypto.IllegalBlockSizeException: Data must not be longer than 53 bytes 的异常)。

那么我们使用 RSA 的时候应该注意什么内容呢?

1.加密的系统不要具备解密的功能,否则 RSA 可能不太合适,

因为这样即使黑客攻破了加密系统,他拿到的也只是一堆无法破解的密文数据。

2.生成密文的长度和明文长度无关,但明文长度不能超过密钥长度

不管明文长度是多少,RSA 生成的密文长度总是固定的。但是明文长度不能超过密钥长度。

也就是阿粉上面说的那个117字节数,不然就只能等着出现异常了。

到此这篇关于详解RSA加密算法的原理与Java实现的文章就介绍到这了,更多相关Java RSA加密算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java实现RSA加密工具类

    公钥加密算法,也就是 非对称加密算法,这种算法加密和解密的密码不一样,一个是公钥,另一个是私钥: 公钥和私钥成对出现 公开的密钥叫公钥,只有自己知道的叫私钥 用公钥加密的数据只有对应的私钥可以解密 用私钥加密的数据只有对应的公钥可以解密 如果可以用公钥解密,则必然是对应的私钥加的密 如果可以用私钥解密,则必然是对应的公钥加的密 公钥和私钥是相对的,两者本身并没有规定哪一个必须是公钥或私钥. 代码如下 package com.cxy.template.controller.keyTools; im

  • Java加密算法RSA代码实例

    这篇文章主要介绍了Java加密算法RSA代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import javax.crypto.BadPaddingException; import javax.crypto.Cipher; import javax.crypto.IllegalBlockSizeException; import javax.crypto.NoSuchPaddingException; import java

  • Java 实现RSA非对称加密算法

    目录 公钥与私钥 Java实现 公钥与私钥 公钥与私钥是成对的,一般的,我们认为的是公钥加密.私钥解密.私钥签名.公钥验证,有人说成私钥加密,公钥解密时不对的. 公钥与私钥的生成有多种方式,可以通过程序生成(下文具体实现),可以通过openssl工具: # 生成一个私钥,推荐使用1024位的秘钥,秘钥以pem格式保存到-out参数指定的文件中,采用PKCS1格式 openssl genrsa -out rsa.pem 1024 # 生成与私钥对应的公钥,生成的是Subject Public Ke

  • Java实现RSA算法的方法详解

    本文实例讲述了Java实现RSA算法的方法.分享给大家供大家参考,具体如下: 一 介绍 唯一广泛接受并实现 用于数据加密和数字签名 公钥加密.私钥解密 私钥加密.公钥解密 二 RSA参数说明 三 实现 package com.imooc.security.rsa; import java.security.KeyFactory; import java.security.KeyPair; import java.security.KeyPairGenerator; import java.sec

  • 详解RSA加密算法的原理与Java实现

    目录 对称加密和非对称加密 RSA加密是什么 RSA的加密过程 前几天阿粉刚刚说了这个 MD5 加密的前世今生,因为 MD5 也确实用的人不是很多了,阿粉就不再继续的一一赘述了,今天阿粉想给大家分享的,是非对称加密中的一种,那就是 RSA 加密算法. 对称加密和非对称加密 在说 RSA 之前,我们得先来说说这个什么事对称加密,什么又是非对称加密? 对称加密指的就是加密和解密使用同一个秘钥,所以叫对称加密.对称加密只有一个秘钥,作为私钥. 非对称加密指的是:加密和解密使用不同的秘钥,一把作为公开的

  • 详解App保活实现原理

    概述 早期的 Android 系统不完善,导致 App 侧有很多空子可以钻,因此它们有着有着各种各样的姿势进行保活.譬如说在 Android 5.0 以前,App 内部通过 native 方式 fork 出来的进程是不受系统管控的,系统在杀 App 进程的时候,只会去杀 App 启动的 Java 进程:因此诞生了一大批"毒瘤",他们通过 fork native 进程,在 App 的 Java 进程被杀死的时候通过am命令拉起自己从而实现永生.那时候的 Android 可谓是魑魅横行,群

  • 详解Feign的实现原理

    目录 一.什么是Feign 二.为什么用Feign 三.实例 3.1.原生使用方式 3.2.结合 Spring Cloud 使用方式 四.探索Feign 五.总结 一.什么是Feign Feign 是⼀个 HTTP 请求的轻量级客户端框架.通过 接口 + 注解的方式发起 HTTP 请求调用,面向接口编程,而不是像 Java 中通过封装 HTTP 请求报文的方式直接调用.服务消费方拿到服务提供方的接⼝,然后像调⽤本地接⼝⽅法⼀样去调⽤,实际发出的是远程的请求.让我们更加便捷和优雅的去调⽤基于 HT

  • 详解高性能缓存Caffeine原理及实战

    目录 一.简介 二.Caffeine 原理 2.1.淘汰算法 2.1.1.常见算法 2.1.2.W-TinyLFU 算法 2.2.高性能读写 2.2.1.读缓冲 2.2.2.写缓冲 三.Caffeine 实战 3.1.配置参数 3.2.项目实战 四.总结 一.简介 下面是Caffeine 官方测试报告. 由上面三幅图可见:不管在并发读.并发写还是并发读写的场景下,Caffeine 的性能都大幅领先于其他本地开源缓存组件. 本文先介绍 Caffeine 实现原理,再讲解如何在项目中使用 Caffe

  • 详解Redis数据类型实现原理

    目录 1. 对象的类型与编码 ① type属性 ② encoding 属性和 *prt 指针 2. 字符串对象 ① 编码 ② 编码的转换 3. 列表对象 ① 编码 ② 编码转换 4. 哈希对象 ① 编码 ② 编码转换 5. 集合对象 ① 编码 ② 编码转换 6. 有序集合对象 ① 编码 ② 编码转换 7. 五大数据类型的应用场景 1. 对象的类型与编码 Redis使用前面说的五大数据类型来表示键和值,每次在Redis数据库中创建一个键值对时,至少会创建两个对象,一个是键对象,一个是值对象,而Re

  • 详解Android Lint的原理及其使用

    Android Lint 原理及使用详解 Android Lint 是 ADT 16中引入的新工具,用于扫描 Android 项目源中的潜在错误. Lint 是 Android 提供的一个强大的,用于静态扫描应用源码并找出其中的潜在问题的实用工具.lint 工具可以检查你的 Android 项目源文件是否有潜在的错误,以及在正确性.安全性.性能.易用性.无障碍性和国际化方面是否需要优化改进. Lint 既可以用作命令行工具,也可以与 Eclipse 和 IntelliJ 集成在一起.它被设计成独

  • 详解jquery选择器的原理

    详解jquery选择器的原理 html部分 <!doctype html> <html lang="en"> <head> <meta charset="UTF-8" /> <title>Document</title> <script src="js/minijquery.js"></script> </head> <body>

  • 详解C#扩展方法原理及其使用

    1.写在前面 今天群里一个小伙伴问了这样一个问题,扩展方法与实例方法的执行顺序是什么样子的,谁先谁后(这个问题会在文章结尾回答).所以写了这边文章,力图从原理角度解释扩展方法及其使用. 以下为主要内容: 什么是扩展方法 扩展方法原理及自定义扩展方法 扩展方法的使用及其注意事项 2.什么是扩展方法 一般而言,扩展方法为现有类型添加新的方法(从面向对象的角度来说,是为现有对象添加新的行为)而无需修改原有类型,这是一种无侵入而且非常安全的方式.扩展方法是静态的,它的使用和其他实例方法几乎没有什么区别.

  • Java 添加、删除、格式化Word中的图片步骤详解( 基于Spire.Cloud.SDK for Java )

    本文介绍使用Spire.Cloud.SDK for Java提供的ImagesApi接口来操作Word中的图片.具体可通过addImage()方法添加图片.deleteImage()方法删除图片.updateImageFormat()格式化Word中的图片以及getImageFormat()获取Word中的图片格式等.操作方法和代码示例可参考下文中的步骤. 步骤1:导入jar文件 创建Maven项目程序,通过maven仓库下载导入.以IDEA为例,新建Maven项目,在pom.xml文件中配置m

  • 详解UDP协议格式及在java中的使用

    UDP是面向无连接的通讯协议,由于通讯不需要连接,所以可以实现广播发送.UDP通讯时不需要接收方确认,属于不可靠的传输,可能会出现丢包现象,实际应用中要求程序员编程验证. UDP适用于DNS.视频音频等多媒体通信.广播通信(广播.多播).例如我们常用的QQ,就是一个以UDP为主,TCP为辅的通讯协议. UDP报文格式如下: UDP首部有8个字节,由4个字段构成,每个字段都是两个字节, 源端口:数据发送方的端口号. 目的端口:数据接收方的端口号. 长度:UDP数据报的整个长度(包括首部和数据),其

随机推荐