tensorflow图像裁剪进行数据增强操作

我就废话不多说了,大家还是直接看代码吧~

#!/usr/bin/env python
# encoding: utf-8
'''
@author: lele Ye
@contact: 1750112338@qq.com
@software: pycharm 2018.2
@file: 13mnist.py
@time: 2018/12/17 10:23
@desc:
'''
import tensorflow as tf
import scipy.misc
import matplotlib.pyplot as plt
import random

# 读取图像可任意大小
filenames = ['./tianchi.jpg']
# 创建文件读取队列
filename_queue = tf.train.string_input_producer(filenames)
# 一个阅读器,读取整个文件,返回文件名称key,以及文件中所有的内容value
reader = tf.WholeFileReader()
# Returns the next record (key, value) pair produced by a reader
key, value = reader.read(filename_queue)
images = tf.image.decode_jpeg(value) # tf.image.decode_png(value)
target_width = target_height = 224

# 裁切图片
with tf.Session() as sess:
  # Coordinator的使用,用于多线程的协调
  coord = tf.train.Coordinator()
  # 启动所有graph收集到的队列运行器(queuerunners)
  threads = tf.train.start_queue_runners(coord=coord)
  height,width,channels = sess.run(tf.shape(images))
  offset_height = random.randint(0,height-target_height)
  offset_width = random.randint(0,width-target_width)
  reshapeimg = tf.image.crop_to_bounding_box(images, offset_height=offset_height, offset_width=offset_width,
                        target_height=target_height,target_width=target_width)
  print(type(reshapeimg)) # <class 'tensorflow.python.framework.ops.Tensor'>
  reimg1 = reshapeimg.eval() # reimg1的类型是<class 'numpy.ndarray'>
  scipy.misc.imsave('./crop.jpg', reimg1)
  plt.imshow(reimg1)
  plt.axis("off")
  plt.show()
  # 请求线程结束
  coord.request_stop()
  # 等待线程终止
  coord.join(threads)

原始图像480x320x3:

裁剪后224x224x3:

补充知识:Tensorflow 图像增强(ImageDataGenerator)

当我们训练一个较为复杂的网络,并且我们的训练数据集有限时,网络十分容易陷入过拟合的状态。

解决这个问题的一个可能的有效方法是:进行数据增强,即通过已有的有限的数据集,通过图像处理等方法(旋转,剪切,缩放…),获得更多的,类似的,多样化的数据。

数据增强处理,不会占用更多的存储空间,即在数据增强过程中,原始的数据不会被修改,所有的处理过程都是在内存中 即时(on-the-fly) 的处理。

注意:

数据增强不一定是万能药(虽然数据多了),数据增强提高了原始数据的随机性,但是若 测试集或应用场景 并不具有这样的随机性,那么它将不会起到作用,还会增加训练所需的时间。

使用方法:

train_datagen = ImageDataGenerator(
    rescale=1./255, #数据值除以255,[0-255] ->[0,1]
    shear_range=0.2, #剪切强度(逆时针方向的剪切角度,以度为单位)
    zoom_range=0.2, #随机缩放范围
    horizontal_flip=True) #水平翻转

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
    'data/train',
    target_size=(150, 150),
    batch_size=32,
    class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
    'data/validation',
    target_size=(150, 150),
    batch_size=32,
    class_mode='binary')

model.fit_generator(
    train_generator,
    steps_per_epoch=2000,
    epochs=50,
    validation_data=validation_generator,
    validation_steps=800)

以上这篇tensorflow图像裁剪进行数据增强操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • TensorFlow2.X使用图片制作简单的数据集训练模型

    Tensorflow内置了许多数据集,但是实际自己应用的时候还是需要使用自己的数据集,这里TensorFlow 官网也给介绍文档,官方文档.这里对整个流程做一个总结(以手势识别的数据集为例). 1. 收集手势图片 数据集下载 方法多种多样了.我通过摄像头自己采集了一些手势图片.保存成如下形式, 以同样的形式在建立一个测试集,当然也可以不弄,在程序里处理. 2.构建数据集 导入相关的包 import tensorflow as tf from tensorflow import keras fro

  • 通过python的matplotlib包将Tensorflow数据进行可视化的方法

    使用matplotlib中的一些函数将tensorflow中的数据可视化,更加便于分析 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) bi

  • 深度学习入门之Pytorch 数据增强的实现

    数据增强 卷积神经网络非常容易出现过拟合的问题,而数据增强的方法是对抗过拟合问题的一个重要方法. 2012 年 AlexNet 在 ImageNet 上大获全胜,图片增强方法功不可没,因为有了图片增强,使得训练的数据集比实际数据集多了很多'新'样本,减少了过拟合的问题,下面我们来具体解释一下. 常用的数据增强方法 常用的数据增强方法如下: 1.对图片进行一定比例缩放 2.对图片进行随机位置的截取 3.对图片进行随机的水平和竖直翻转 4.对图片进行随机角度的旋转 5.对图片进行亮度.对比度和颜色的

  • python使用TensorFlow进行图像处理的方法

    一.图片的放大缩小 在使用TensorFlow进行图片的放大缩小时,有三种方式: 1.tf.image.resize_nearest_neighbor():临界点插值 2.tf.image.resize_bilinear():双线性插值 3.tf.image.resize_bicubic():双立方插值算法 下面是示例代码: # encoding:utf-8 # 使用TensorFlow进行图片的放缩 import tensorflow as tf import cv2 import numpy

  • tensorflow图像裁剪进行数据增强操作

    我就废话不多说了,大家还是直接看代码吧~ #!/usr/bin/env python # encoding: utf-8 ''' @author: lele Ye @contact: 1750112338@qq.com @software: pycharm 2018.2 @file: 13mnist.py @time: 2018/12/17 10:23 @desc: ''' import tensorflow as tf import scipy.misc import matplotlib.p

  • 深入了解Python Opencv数据增强

    目录 1.按比例放大和缩小 2.平移图像 3.旋转图像 4.镜像变换 5.添加椒盐噪声 6.添加高斯噪声 7.模糊化 8.重新组合颜色通道 实例 总结 常见的数据增强操作有:按比例放大或缩小图片.旋转.平移.水平翻转.改变图像通道等. 1.按比例放大和缩小 ​ 扩展缩放只是改变图像的尺寸大小.OpenCV 提供的函数 cv2.resize()可以实现这个功能.图像的尺寸可以自己手动设置,也可以指定缩放因子.可以选择使用不同的插值方法.在缩放时我们推荐使用 cv2.INTER_AREA,在扩展时我

  • Python深度学习albumentations数据增强库

    数据增强的必要性 深度学习在最近十年得以风靡得益于计算机算力的提高以及数据资源获取的难度下降.一个好的深度模型往往需要大量具有label的数据,使得模型能够很好的学习这种数据的分布.而给数据打标签往往是一件耗时耗力的工作. 拿cv里的经典任务为例,classification需要人准确识别物品类别或者生物种类,object detection需要人工画出bounding box, 确定其坐标,semantic segmentation甚至需要在像素级别进行标签标注.对于一些专业领域的图像标注,依

  • 深入了解Python Opencv数据增强

    目录 1.按比例放大和缩小 2.平移图像 3.旋转图像 4.镜像变换 5.添加椒盐噪声 6.添加高斯噪声 7.模糊化 8.重新组合颜色通道 实例 总结 常见的数据增强操作有:按比例放大或缩小图片.旋转.平移.水平翻转.改变图像通道等. 1.按比例放大和缩小 ​ 扩展缩放只是改变图像的尺寸大小.OpenCV 提供的函数 cv2.resize()可以实现这个功能.图像的尺寸可以自己手动设置,也可以指定缩放因子.可以选择使用不同的插值方法.在缩放时我们推荐使用 cv2.INTER_AREA,在扩展时我

  • 基于Python的图像数据增强Data Augmentation解析

    1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟合. 在计算机视觉中,典型的数据增强方法有翻转(Flip),旋转(Rotat ),缩放(Scale),随机裁剪或补零(Random Crop or Pad),色彩抖动(Color jittering),加噪声(Noise) 笔者在跟进视频及图像中的人体姿态检测和关键点追踪(Human Pose Es

  • Tensorflow 实现将图像与标签数据转化为tfRecord文件

    tensorflow中如果要对神经网络模型进行训练,需要把训练数据转换为tfrecord格式才能被读取,tensorflow的model文件里直接提供了相应的脚本文件在下面的文件夹中: cd tensorflow/models/research/object_detection/dataset_tools 其中包括: 1.create_coco_tf_record.py:注意,这个代码需要解析json格式的标签文件 2.create_pascal_tf_record.py:注意,这个代码需要解析

  • Keras 数据增强ImageDataGenerator多输入多输出实例

    我就废话不多说了,大家还是直接看代码吧~ import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="" import sys import gc import time import cv2 import random import numpy as np import pandas as pd impo

  • Tensorflow分批量读取数据教程

    之前的博客里使用tf读取数据都是每次fetch一条记录,实际上大部分时候需要fetch到一个batch的小批量数据,在tf中这一操作的明显变化就是tensor的rank发生了变化,我目前使用的人脸数据集是灰度图像,因此大小是92*112的,所以最开始fetch拿到的图像数据集经过reshape之后就是一个rank为2的tensor,大小是92*112的(如果考虑通道,也可以reshape为rank为3的,即92*112*1).如果加入batch,比如batch大小为5,那么拿到的tensor的r

  • 分析语音数据增强及python实现

    目录 一.概述 二.加噪 2.1.第一种:控制噪声因子 2.2.第二种:控制信噪比 三.加混响 3.1.方法一:Pyroomacoustics实现音频加混响 3.2.方法二:Image Source Method 算法讲解 四.生成指定SER的混响 五.波形位移 六.波形拉伸 七.音高修正(Pitch Shifting) 一.概述 音频时域波形具有以下特征:音调,响度,质量.我们在进行数据增强时,最好只做一些小改动,使得增强数据和源数据存在较小差异即可,切记不能改变原有数据的结构,不然将产生"脏

  • thinkPHP框架实现图像裁剪、缩放、加水印的方法

    本文实例讲述了thinkPHP框架实现图像裁剪.缩放.加水印的方法.分享给大家供大家参考,具体如下: ThinkPHP 图片处理函数,需要文字水印字体,可在windows下 控制面板 > 大图标(右上角) > 字体 找到需要的字体 /** * 图像的裁剪.缩放.加水印 * @param string $path 路径 * @param int $width 裁剪的宽度/限制的高度或宽度,当有$height值时此值为图片的宽度,否则为限制的宽度或高度 * @param int $height [

随机推荐