python可视化之颜色映射详解

本文主要介绍一下在学习可视化过程里遇到的一些情况

比如cmap=plt.cm.Blues的映射

import matplotlib.pyplot as plt
from random_walk import RandomWalk
# Keep making new walks, as long as the program is active.
while True:
    # Make a random walk.
    rw = RandomWalk(50_000)
    rw.fill_walk()
    # Plot the points in the walk.
    plt.style.use('classic')
    fig, ax = plt.subplots(figsize=(15, 9))
    point_numbers = range(rw.num_points)
    y_values=rw.y_values
    ax.scatter(rw.x_values, rw.y_values, c=y_values, cmap=plt.cm.Blues,
        edgecolors='none', s=1)
    # Emphasize the first and last points.
    ax.scatter(0, 0, c='green', edgecolors='none', s=100)
    ax.scatter(rw.x_values[-1], rw.y_values[-1], c='red', edgecolors='none',
        s=100)
    # Remove the axes.
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    plt.show()
    keep_running = input("Make another walk? (y/n): ")
    if keep_running == 'n':
        break
 ax.scatter(rw.x_values, rw.y_values, c=range(50000), cmap=plt.cm.Blues,

这里的c和cmap是一起使用的

c是一个列表,列表里面的数值不一定要按照大小顺序排列,但是数值的大小对应着颜色映射,数值本身越小,颜色越浅。而数值的位置对应着点的顺序,列表里面的第一个数(不管大小),对应着由x_values和y_values产生的点

这里的y_values是由随机漫步产生的,第一个点到最后一个点是连续变化的,这种随机漫步会导致,第一个点到最后一个点的位置规律是有迹可循的(比如y值是从小到大变化的),局部看上去是随机的,但是趋势不是,趋势是有规律的。

所以列表里面的数值大小不固定,可能是从小到大,也可能是从大到小,例如下面这里是从小到大排列的。第一个点对应的数值小,所以颜色浅,反之最后一个点数值大,颜色深。第一个点偏上,最后一个点偏下,说明y应该是逐渐变小的,那么y_values应该是从大到小,所以对应的点的颜色就是从深到浅。也就是说点的位置变化(如y值)有规律,那么颜色的变化也是有规律的。因为在使用c=y_values的时候,是根据点的y值来的。

总之,关键字实参c=point_numbers的列表里面数字的位置对应点的顺序,而数值的大小,对应颜色深浅。

反之,如果c=y_values,第一个点到最后一个点的y值是从低到高的话,那么颜色是由浅到深的。

这里的c=range(50000)的时候,数据是从小到大排列的,所以第一个点到最后一个点颜色从浅到深。点的位置变化有迹可循,颜色变化也有迹可循,所以整体看起来会比较有规律。

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • python数据可视化plt库实例详解

    先看下jupyter和pycharm环境的差别 左边是jupyter----------------------------------------------------------右边是pycharm 以下都是使用pycharm环境 1.一个窗口画出一个线性方程 import numpy as np import matplotlib.pyplot as plt x = np.linspace(0,1,11)# 从0到1,个数为11的等差数列 print(x) y = 2*x plt.plo

  • 这3个Python实时可视化工具包来帮你了解性能瓶颈

    前言 Python中的日志模块可用于跟踪代码的事件,并可用于确定代码崩溃的原因.有效地使用记录器还可以跟踪代码片段的时间复杂度.日志记录可能很有用,但它技术性太强,需要适当的实现.在本文中,我们将讨论3个这样的开源的Python库,它们可以帮助开发人员在几行代码中可视化程序的执行. 一.Pyheat Pyheat 是一个开源的 Python 库,帮助开发人员获得代码执行的逐行时间分布.Pyheat不是以表格格式显示,而是用热图表示运行每行代码所需的时间. Pyheat 可以使用从 PyPl 安装

  • 浅谈哪个Python库才最适合做数据可视化

    数据可视化是任何探索性数据分析或报告的关键步骤,它可以让我们一眼就能洞察数据集.目前有许多非常好的商业智能工具,比如Tableau.googledatastudio和PowerBI,它们可以让我们轻松地创建图形. 然而,数据分析师或数据科学家还是习惯使用 Python 在 Jupyter notebook 上创建可视化效果.目前最流行的用于数据可视化的 Python 库:Matplotlib.Seaborn.plotlyexpress和Altair.每个可视化库都有自己的特点,没有完美的可视化库

  • Python可视化目标检测框的实现代码

    目录 1 引言 2 举个栗子 3 实现 3.1 函数讲解 3.2 读入图像 3.3 标签美化 3.4 角点美化 3.5 综合效果 4 透明效果实现 5 扩展应用 6 总结 7 参考 1 引言 随着计算机视觉算法工程师的内卷,从事目标检测的小伙伴们越来越多了. 很多时候我们费了九牛二虎之力训练了一版模型,可是可视化出来的效果平淡无奇. 是不是有点太不给力啦,作为计算机视觉工程师,我们是不是应该关注下如何优雅地可视化我们模型地检测结果呢? 2 举个栗子 最常用的可视化目标检测结果的就是我们所说的矩形

  • 利用Python进行数据可视化的实例代码

    目录 前言 首先搭建环境 实例代码 例子1: 例子2: 例子3: 例子4: 例子5: 例子6: 总结 前言 前面写过一篇用Python制作PPT的博客,感兴趣的可以参考 用Python制作PPT 这篇是关于用Python进行数据可视化的,准备作为一个长贴,随时更新有价值的Python可视化用例,都是网上搜集来的,与君共享,本文所有测试均基于Python3. 首先搭建环境 $pip install pyecharts -U $pip install echarts-themes-pypkg $pi

  • 学会Python数据可视化必须尝试这7个库

    目录 一.Seaborn 二.Plotly 三.Geoplotlib 四.Gleam 五.ggplot 六.Bokeh 七.Missingo 一.Seaborn Seaborn 建于 matplotlib 库的之上.它有许多内置函数,使用这些函数,只需简单的代码行就可以创建漂亮的绘图.它提供了多种高级的可视化绘图和简单的语法,如方框图.小提琴图.距离图.关节图.成对图.热图等. 安装 ip install seaborn 主要特征: 可用于确定两个变量之间的关系. 在分析单变量或双变量分布时进行

  • python可视化之颜色映射详解

    本文主要介绍一下在学习可视化过程里遇到的一些情况 比如cmap=plt.cm.Blues的映射 import matplotlib.pyplot as plt from random_walk import RandomWalk # Keep making new walks, as long as the program is active. while True: # Make a random walk. rw = RandomWalk(50_000) rw.fill_walk() # P

  • Python 可视化神器Plotly详解

    文 | 潮汐 来源:Python 技术「ID: pythonall」 学习Python是做数分析的最基础的一步,数据分析离不开数据可视化.Python第三方库中我们最常用的可视化库是 pandas,matplotlib,pyecharts, 当然还有 Tableau,另外最近在学习过程中发现另一款可视化神器-Plotly,它是一款用来做数据分析和可视化的在线平台,功能非常强大, 可以在线绘制很多图形比如条形图.散点图.饼图.直方图等等.除此之外,它还支持在线编辑,以及多种语言 python.ja

  • Python数据可视化绘图实例详解

    目录 利用可视化探索图表 1.数据可视化与探索图 2.常见的图表实例 数据探索实战分享 1.2013年美国社区调查 2.波士顿房屋数据集 利用可视化探索图表 1.数据可视化与探索图 数据可视化是指用图形或表格的方式来呈现数据.图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义.用户通过探索图(Exploratory Graph)可以了解数据的特性.寻找数据的趋势.降低数据的理解门槛. 2.常见的图表实例 本章主要采用 Pandas 的方式来画图,而不是使用 Matpl

  • Python Matplotlib数据可视化模块使用详解

    目录 前言 1 matplotlib 开发环境搭建 2 绘制基础 2.1 绘制直线 2.2 绘制折线 2.3 设置标签文字和线条粗细 2.4 绘制一元二次方程的曲线 y=x^2 2.5 绘制正弦曲线和余弦曲线 3 绘制散点图 4 绘制柱状图 5 绘制饼状图 6 绘制直方图 7 绘制等高线图 8 绘制三维图 总结 本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍. 通过阅读本文,你可以: 了解什么是 Matplotlib 掌握如何用 Matplotlib

  • 基于Python闭包及其作用域详解

    关于Python作用域的知识在python作用域有相应的笔记,这个笔记是关于Python闭包及其作用域的详细的笔记 如果在一个内部函数里,对一个外部作用域(但不是全局作用域)的变量进行引用,那么内部函数就被称为闭包(closure),而这个被内部函数引用的变量则被成为自由变量 闭包和函数调用没多少相关,而是关于使用定义在其他作用域的变量 命名空间和作用域 我们把命名空间看做一个大型的字典类型(Dict),里面包含了所有变量的名字和值的映射关系.在 Python 中,作用域实际上可以看做是"在当前

  • Python爬虫天气预报实例详解(小白入门)

    本文研究的主要是Python爬虫天气预报的相关内容,具体介绍如下. 这次要爬的站点是这个:http://www.weather.com.cn/forecast/ 要求是把你所在城市过去一年的历史数据爬出来. 分析网站 首先来到目标数据的网页 http://www.weather.com.cn/weather40d/101280701.shtml 我们可以看到,我们需要的天气数据都是放在图表上的,在切换月份的时候,发现只有部分页面刷新了,就是天气数据的那块,而URL没有变化. 这是因为网页前端使用

  • python爬虫selenium模块详解

    selenium模块 selenium基本概念 selenium优势 便捷的获取网站中动态加载的数据 便捷实现模拟登陆 selenium使用流程: 1.环境安装:pip install selenium 2.下载一个浏览器的驱动程序(谷歌浏览器) 3.实例化一个浏览器对象 基本使用 代码 from selenium import webdriver from lxml import etree from time import sleep if __name__ == '__main__': b

  • Python 机器学习之线性回归详解分析

    为了检验自己前期对机器学习中线性回归部分的掌握程度并找出自己在学习中存在的问题,我使用C语言简单实现了单变量简单线性回归. 本文对自己使用C语言实现单变量线性回归过程中遇到的问题和心得做出总结. 线性回归 线性回归是机器学习和统计学中最基础和最广泛应用的模型,是一种对自变量和因变量之间关系进行建模的回归分析. 代码概述 本次实现的线性回归为单变量的简单线性回归,模型中含有两个参数:变量系数w.偏置q. 训练数据为自己使用随机数生成的100个随机数据并将其保存在数组中.采用批量梯度下降法训练模型,

  • Facebook开源一站式服务python时序利器Kats详解

    目录 什么是 Kats? 安装 Kats 将数据转换为时间序列 预测 从使用 Prophet 进行预测开始: 可视化 Holt-Winters 检测变化点 机器学习 深度学习 孤立点检测 时间序列特征 小结 转自微信公众号:机器学习社区,经作者授权转载 时间序列分析是数据科学中一个非常重要的领域,它主要包含统计分析.检测变化点.异常检测和预测未来趋势.然而,这些时间序列技术通常由不同的库实现.有没有一种方法可以让你在一个库中获得所有这些技术? 答案是肯定的,本文中我将分享一个非常棒的工具包 Ka

  • Python OpenCV阈值处理详解

    目录 前言 阈值技术简介 简单的阈值技术 阈值类型 简单阈值技术的实际应用 前言 图像分割是许多计算机视觉应用中的关键处理步骤,通常用于将图像划分为不同的区域,这些区域常常对应于真实世界的对象.因此,图像分割是图像识别和内容分析的重要步骤.图像阈值是一种简单.有效的图像分割方法,其中像素根据其强度值进行分区.在本文中,将介绍 OpenCV 所提供的主要阈值技术,可以将这些技术用作计算机视觉应用程序中图像分割的关键部分. 阈值技术简介 阈值处理是一种简单.有效的将图像划分为前景和背景的方法.图像分

随机推荐