Dijkstra算法与Prim算法的异同案例详解

目录
  • Dijkstra简述
  • Prim简述
    • 思想
    • 时间复杂度
    • Dijkstra特例

Dijkstra简述

Dijkstra算法用于构建单源点的最短路径树(MST)——即树中某个点到任何其他点的距离都是最短的。例如,构建地图应用时查找自己的坐标离某个地标的最短距离。可以用于有向图,但是不能存在负权值(Bellman-Ford可以处理负权值)。

  • 伪代码
Dijkstra() {
    for each u in G,V {
        //此处做初始化操作,给每个节点u赋键值+∞,设置空为父节点
        u.key = +∞
        u.parent = NULL
    }
    //选初始点r,Q是无向图G中所有点V的权值优先队列,key可看作源点到u的距离
    r.key = 0
    Q = G,V
    while(Q != ∅) {
          //取出Q中权值最小值的点u
          u = extractMin(Q)
          //取点u连接的所有节点(即无向图G的邻接表中的第u个链表)
          for each v ∈ G.Adj[u] {
              if (v ∈ Q) and (w(u, v) < key) {
                  //若该节点仍在Q中且权值w(w,v)小于其原始权值,则进行松弛操作!
                  v.parent = u
                  v.key = w(u, v) + u.key
              }
          }
      }
}

Prim简述

Prim算法用于构建最小生成树——即树中所有边的权值之和最小。例如,构建电路板,使所有边的和花费最少。只能用于无向图

  • 伪代码
//无向图G, 权值w, 起始点r
MST(G, w, r) {
    for each u in G,V {
        //此处做初始化操作,给每个节点u赋键值+∞,设置空为父节点
        u.key = +∞
        u.parent = NULL
    }
    //选初始点r,Q是无向图G中所有点V的权值优先队列,key可看作u到下一个节点v的距离
    r.key = 0
    Q = G,V
    while(Q != ∅) {
          //取出Q中权值最小值的点u
          u = extractMin(Q)
          //取点u连接的所有节点(即无向图G的邻接表中的第u个链表)
          for each v ∈ G.Adj[u] {
              if (v ∈ Q) and (w(u, v) < key) {
                  //若该节点仍在Q中且权值w(w,v)小于其原始权值,则进行松弛操作!
                  v.parent = u
                  v.key = w(u, v)
              }
          }
      }
}

MST中任意AB两点之间的距离,并不比原始图中AB的距离短,即原始图中可能存在边E(A,B)**小于**MST中的E(A,B)。

注意上述两个伪算法的差别只在于最后循环体内的松弛操作

  • 最小生成树只关心所有边的和最小,所以有v.key = w(u, v),即每个点直连其他点的最小值(最多只有两个节点之间的权值和)
  • 最短路径树只搜索权值最小,所以有v.key = w(u, v) + u.key,即每个点到其他点的最小值(最少是两个节之间的权值和)

简单总结就是,Dijkstra的松弛操作加上了到起点的距离,而Prim只有相邻节点的权值。

思想

都是使用贪婪和线性规划,每一步都是选择权值/花费最小的边。
贪婪:一个局部最有解也是全局最优解;
线性规划:主问题包含n个子问题,而且其中有重叠的子问题。

Dijkstra算法通过线性规划缓存了最优子路径的解,每一步也通过贪婪算法来选择最小的边。
Prim算法通过贪婪来选择最小的边,而Prim的每个子树都是最小生成树说明满足线性规划的两个条件。

时间复杂度

Time = θ( V * T1 + E * T2)
其中T1为取出键值最小点的时间,T2为降低键值的时间,取决于数据结构。

  • 数组
    T1= O(V), T2 = O(1), TIME = O(V * V + E) = O(V * V)
  • 二叉堆
    T1 = O(lgV), T2 = O(lgV), TIME = O(V * lgV + E * lgV) 
  • 斐波那契堆
    T1 = O(lgV), T2 = O(1), TIME = O(V * lgV + E) = O(V * lgV)

对于稀疏图来说,E远小于V*V,所以二叉堆比较好;
而对于密集图来说,E=V*V,所以数组比较好;
斐波那契堆是最好的情况。

Dijkstra特例

当边的权值都为1的时候,可以用DFS(广度优先搜索)优化时间复杂度。

  • 使用FIFO(先进先出)队列代替优先队列,优化了降低键值T2的操作为O(1)
  • 松弛操作改为
    if d[v] = +∞ {
        d[v] = d[u] + 1
        enqueue(Q, v)
    }

优化了取出键值最小点的时间T1 = O(1)

总的时间复杂度

TIME = V + E

到此这篇关于Dijkstra算法与Prim算法的异同案例详解的文章就介绍到这了,更多相关Dijkstra算法与Prim算法的异同内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 实现Dijkstra算法最短路径问题详解

    1.最短路径问题介绍 问题解释: 从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径,称为最短路径 解决问题的算法: 迪杰斯特拉算法(Dijkstra算法) 弗洛伊德算法(Floyd算法) SPFA算法 这篇博客,我们就对Dijkstra算法来做一个详细的介绍 2.Dijkstra算法介绍 算法特点: 迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树.该算法常用于路由算法或者作为其他图算法的一个子模块. 算法的思路 Dijk

  • python实现Dijkstra算法的最短路径问题

    迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法. 1 算法原理 迪杰斯特拉(Dijkstra)算法是一个按照路径长度递增的次序产生的最短路径算法.下图为带权值的有向图,作为程序中的实验数据. 其中,带权值的有向图采用邻接矩阵graph来进行存储,在计算中就是采用n*n的二维数组来进行存储,v0-v5表示数组的索引编号0-5,二维数组的值表示节点之间的权值,若两个节点不能通行,比如,v0->v1不能通行,那么graph[0,1]=+∞ (采

  • MongoDB 主分片(primary shard)相关总结

    01 主分片是什么? 分片集群中的每一个数据库都有一个主分片,这个主分片上保存了当前数据库中没有被分片的集合的数据,主分片(primary shard)和主节点(primary)之间没有任何关联. 主分片是由mongos选择出来的,选择的依据是每当创建新数据库的时候,mongos会从集群中选择包含数据最少的分片作为新数据库的主分片.具体的选择方式是: 选择listDatabase命令返回的totalSize字段作为选择的准则.如下: mongos> db.adminCommand("lis

  • Python 经典贪心算法之Prim算法案例详解

    最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空集合, V = {任选的一个起始节点} 循环(n – 1)次,每次选择一条边(v1,v2), 满足:v1属于V , v2不属于V.且(v1,v2)权值最小. E = E + (v1,v2) V = V + v2 最终E中的边是一棵最小生成树, V包含了全部节点. 以下图为例介绍Prim算法的执行过程

  • c++ primer中的const限定符

    const 限定符  const是一种类型修饰符,用于说明永不改变的对象.const对象一旦定义,就无法再赋新值,所以必须被初始化. 例:const int bufsize = 512; 它的值一旦定义就不能被改变,并且默认情况下,仅对文件内有效. 如果要在多个文件中共享const对象,则需要在定义和声明前都加extern: 初始化和对const的引用 例: const int ci = 1024; const int &r1= ci; r1 = 42; // 值不可以被改变 int &r

  • python Dijkstra算法实现最短路径问题的方法

    本文借鉴于张广河教授主编的<数据结构>,对其中的代码进行了完善. 从某源点到其余各顶点的最短路径 Dijkstra算法可用于求解图中某源点到其余各顶点的最短路径.假设G={V,{E}}是含有n个顶点的有向图,以该图中顶点v为源点,使用Dijkstra算法求顶点v到图中其余各顶点的最短路径的基本思想如下: 使用集合S记录已求得最短路径的终点,初始时S={v}. 选择一条长度最小的最短路径,该路径的终点w属于V-S,将w并入S,并将该最短路径的长度记为Dw. 对于V-S中任一顶点是s,将源点到顶点

  • 详解Dijkstra算法之最短路径问题

    一.最短路径问题介绍 问题解释: 从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径,称为最短路径 解决问题的算法: 迪杰斯特拉算法(Dijkstra算法) 弗洛伊德算法(Floyd算法) SPFA算法 这篇博客,我们就对Dijkstra算法来做一个详细的介绍 二.Dijkstra算法介绍 2.1.算法特点 迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树.该算法常用于路由算法或者作为其他图算法的一个子模块. 2.2.算法的

  • Dijkstra算法与Prim算法的异同案例详解

    目录 Dijkstra简述 Prim简述 异 同 思想 时间复杂度 Dijkstra特例 Dijkstra简述 Dijkstra算法用于构建单源点的最短路径树(MST)--即树中某个点到任何其他点的距离都是最短的.例如,构建地图应用时查找自己的坐标离某个地标的最短距离.可以用于有向图,但是不能存在负权值(Bellman-Ford可以处理负权值). 伪代码 Dijkstra() { for each u in G,V { //此处做初始化操作,给每个节点u赋键值+∞,设置空为父节点 u.key =

  • python利用K-Means算法实现对数据的聚类案例详解

    目的是为了检测出采集数据中的异常值.所以很明确,这种情况下的簇为2:正常数据和异常数据两大类 1.安装相应的库 import matplotlib.pyplot as plt # 用于可视化 from sklearn.cluster import KMeans # 用于聚类 import pandas as pd # 用于读取文件 2.实现聚类 2.1 读取数据并可视化 # 读取本地数据文件 df = pd.read_excel("../data/output3.xls", heade

  • Java DFA算法案例详解

    1.背景 项目中需要对敏感词做一个过滤,首先有几个方案可以选择: 直接将敏感词组织成String后,利用indexOf方法来查询. 传统的敏感词入库后SQL查询. 利用Lucene建立分词索引来查询. 利用DFA算法来进行. 首先,项目收集到的敏感词有几千条,使用a方案肯定不行.其次,为了方便以后的扩展性尽量减少对数据库的依赖,所以放弃b方案.然后Lucene本身作为本地索引,敏感词增加后需要触发更新索引,并且这里本着轻量原则不想引入更多的库,所以放弃c方案.于是我们选定d方案为研究目标. 2.

  • C语言实现BF算法案例详解

    BF算法:        BF算法即暴风算法,是普通的模式匹配算法.BF算法的思想:将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的第二个字符和T的第一个字符,依次比较下去,直到得出最后的匹配结果.BF算法是一种蛮力算法. 图示: #include <stdio.h> #include <string.h> int BF(const char *s, const char* sub, int pos)//

  • JVM中四种GC算法案例详解

    目录 介绍 引用计数算法(Reference counting) 算法思想: 核心思想: 优点: 缺点: 例子如图: 标记–清除算法(Mark-Sweep) 算法思想: 优点 缺点 例子如图 标记–整理算法 算法思想 优点 缺点 例子 复制算法 算法思想 优点 缺点 总结 介绍 程序在运行过程中,会产生大量的内存垃圾(一些没有引用指向的内存对象都属于内存垃圾,因为这些对象已经无法访问,程序用不了它们了,对程序而言它们已经死亡),为了确保程序运行时的性能,java虚拟机在程序运行的过程中不断地进行

  • js-FCC算法-No repeats please字符串的全排列(详解)

    把一个字符串中的字符重新排列生成新的字符串,返回新生成的字符串里没有连续重复字符的字符串个数.连续重复只以单个字符为准 例如, aab 应该返回 2 因为它总共有6中排列 (aab, aab, aba, aba, baa, baa),但是只有两个 (aba and aba)没有连续重复的字符 (在本例中是 a). 从网上资料获得了一些思路,我的代码: function permAlone(str) { var arr=str.split(""); var perarr=[]; var

  • java算法之二分查找法的实例详解

    java算法之二分查找法的实例详解 原理 假定查找范围为一个有序数组(如升序排列),要从中查找某一元素,如果该元素在此数组中,则返回其索引,否则返回-1.通过数组长度可取出中间位置元素的索引,将其值与目标值比较,如果中间位置元素值大于目标值,则在左部分进行查找,如果中间位置值小于目标值,则在右部分进行查找,如此循环,直到结束.二分查找算法之所以快是因为它没有遍历数组的每个元素,而仅仅是查找部分元素就能找到目标或确定其不存在,当然前提是查找范围为有序数组. Java的简单实现 package me

  • Python实现K-means聚类算法并可视化生成动图步骤详解

    K-means算法介绍 简单来说,K-means算法是一种无监督算法,不需要事先对数据集打上标签,即ground-truth,也可以对数据集进行分类,并且可以指定类别数目 牧师-村民模型 K-means 有一个著名的解释:牧师-村民模型: 有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的村民,于是每个村民到离自己家最近的布道点去听课. 听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的村民的地址,搬到了所有地址的中心地带,并且在海

  • Go Java算法之外观数列实现方法示例详解

    目录 外观数列 方法一:遍历生成(Java) 方法二:递归(Go) 外观数列 给定一个正整数 n ,输出外观数列的第 n 项. 「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述. 你可以将其视作是由递归公式定义的数字字符串序列: countAndSay(1) = "1" countAndSay(n) 是对 countAndSay(n-1) 的描述,然后转换成另一个数字字符串. 前五项如下: 1.1 —— 第一项是数字 1 2.11 —— 描述前一项,这个数

随机推荐