OpenCV 视频中火焰检测识别实践

主要完成两个视频中火焰的检测,主要结合RGB判据和HIS判据,设定合适的阈值条件,检测出火焰对应像素的区域,将原图二值化,经过中值滤波以及数学形态学的膨胀运算等图像处理,消除一些噪声及离散点,连通一些遗漏的区域。基于OpenCV的开源库,在VS2013平台上,实现了两个视频中火焰的检测。

利用OpenCV有强大的图像处理库,直接将图像分离为RGB三通道,设置条件限制,找到火焰的像素位置,将原图处理成二值图像。对于火焰检测,本文结合RGB判据和HIS判据,分割出火焰的区域。一般用于人眼观看的颜色模型是RGB模型,对于火焰而言,红色分量(R)和绿色分量(G)会很大,并且绿色分量(G)会大于蓝色分量(B)。HIS颜色模型分别用H(色度)S(饱和度)I(亮度)描述颜色特性,与人们感受颜色的方式紧密相连。考虑到单一颜色模型的判据准确性不够高,在RGB判据基础上,添加HIS约束条件。具体条件[1]为:

其中,Rt是红色分量阈值,St是饱和度阈值,火焰像素主要取决于红色分量(R)的色度和饱和度。若满足式(1),则判断该位置为火焰像素,显示为白色,否则显示为黑色。判据中阈值的选择对于火焰检测是至关重要的,一般靠经验设定,为了获取火焰识别最好的效果,设置两个滑动条,改变阈值Rt和St的大小,选取最合适的值。

由于(1)中只需要用到HIS中的S分量,所以不需要用到颜色模型转换函数,直接计算S分量即可。

获取二值图像后,需要对其预处理,找到遗漏的点,剔除异常的点。由于存在噪声及离散点,对图像进行平滑滤波,本文采用的是中值滤波,中值滤波是典型的非线性滤波,用像素点邻域灰度值的中值来代替该像素点的灰度值,非常利于消除一些误判断为火焰的像素点。

由于部分火焰的颜色不是介于红黄之间,无法识别,需要实现区域的连通,因此对二值图像进行数学形态学操作。形态学是一种强大的图像处理工具,它可以实现图像去噪、图像分割等功能,最基本的形态学操作有两种,分别是膨胀与腐蚀。它们可以衍生出很多强大的形态学算法,实现我们想要的功能。采用形态学处理的最基础的膨胀操作,作用于火焰的二值图像中。

编写CheckColor函数,将以上3个功能实现。

为了表示出视频中火焰的区域,在预处理过后,将火焰轮廓用矩形框标记,编写了画矩形框的函数DrawFire,其中使用了OpenCV的寻找轮廓的函数findContours,由于作业中test2的火焰位置是分散在不同地方的,所以对整张图像进行区域的划分,分别用不同矩形标记不同区域出现的火焰。

基于OpenCV的库,在VS2013上实现算法,由于视频中的火焰检测是实时动态的,下面截取几帧画面用于展示实验结果:

本文采用RGB判据和HIS判据结合的方法,按照经验法和不断地调试,选择合适的阈值,基于OpenCV在VS2013上实现算法,从test1实验结果可以看出,在背景比较单调且与火焰差别较大时,效果良好,几乎没有任何噪声对其造成干扰。从test2实验结果可以看出,当背景复杂或与火焰颜色比较相似时,会不时出现噪声和误判,需要进一步提高算法。

列出处理test2视频的具体代码:

#include<opencv2/opencv.hpp>
#include<cv.h>

using namespace cv;
int redThre =49; // 115~135
int saturationTh = 7; //55~65
Mat CheckColor(Mat &inImg);
void DrawFire(Mat &inputImg, Mat foreImg);

int main()
{
	VideoCapture capture("test2.avi");

	while (1)
	{
		Mat frame;

		capture >> frame;
		if (frame.empty())
			break;
		namedWindow("Control", CV_WINDOW_AUTOSIZE);
		cvCreateTrackbar("redThre", "Control", &redThre, 255);
		cvCreateTrackbar("saturationTh", "Control", &saturationTh, 255);
		CheckColor(frame);
		waitKey(1);
	}
	return 0;
}

//The Color Check is According to "An Early Fire-Detection Method Based on Image Processing"
//The Author is:Thou-Ho (Chao-Ho) Chen, Ping-Hsueh Wu, and Yung-Chuen Chiou  

Mat CheckColor(Mat &inImg)
{
	Mat fireImg;
	fireImg.create(inImg.size(), CV_8UC1);
	Mat multiRGB[3];
	int a = inImg.channels();
	split(inImg, multiRGB); //将图片拆分成R,G,B,三通道的颜色  

	for (int i = 0; i < inImg.rows; i++)
	{
		for (int j = 0; j < inImg.cols; j++)
		{
			float B, G, R;
			B = multiRGB[0].at<uchar>(i, j); //每个像素的R,G,B值,动态地址计算法
			G = multiRGB[1].at<uchar>(i, j);
			R = multiRGB[2].at<uchar>(i, j);

			float maxValue = max(max(B, G), R);
			float minValue = min(min(B, G), R);
			//与HSI中S分量的计算公式
			double S = (1 - 3.0*minValue / (R + G + B));//

			//R > RT  R>=G>=B  S>=((255-R)*ST/RT)
			if (R > redThre &&R >= G && G>= B && S >((255 - R) * saturationTh / redThre))
			{
				fireImg.at<uchar>(i, j) = 255;
			}
			else
			{
				fireImg.at<uchar>(i, j) = 0;
			}
		}
	}

	//erode(fireImg, fireImg, Mat(3, 3, CV_8UC1));
	//GaussianBlur(fireImg, fireImg, Size(5, 5), 0, 0);
	medianBlur(fireImg, fireImg, 5);
	dilate(fireImg, fireImg, Mat(5, 5, CV_8UC1));
    imshow("Binary", fireImg);
	DrawFire(inImg, fireImg);
	return fireImg;
}

void DrawFire(Mat &inputImg, Mat foreImg)
{
	vector<vector<Point>> contours_set;//保存轮廓提取后的点集及拓扑关系
	findContours(foreImg, contours_set, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
	Point point1;
	Point point2;
	float a = 0.4, b = 0.75;
	float xmin1 = a*inputImg.cols, ymin1 = inputImg.rows, xmax1 = 0, ymax1 = 0;
	float xmin2 = b*inputImg.cols, ymin2 = inputImg.rows, xmax2 = a*inputImg.cols, ymax2 = 0;
	float xmin3 = inputImg.cols, ymin3 = inputImg.rows, xmax3 = b*inputImg.cols, ymax3 = 0;
	Rect finalRect1;
	Rect finalRect2;
	Rect finalRect3;
	vector<vector<Point> >::iterator iter = contours_set.begin();
	for (; iter != contours_set.end();)
	{
		Rect rect = boundingRect(*iter);
		float radius;
		Point2f center;
		minEnclosingCircle(*iter, center, radius);

		if (rect.area()> 0)
		{
			point1.x = rect.x;
			point1.y = rect.y;
			point2.x = point1.x + rect.width;
			point2.y = point1.y + rect.height;

			if (point2.x< a*inputImg.cols)
			{
				if (point1.x < xmin1)
					xmin1 = point1.x;
				if (point1.y < ymin1)
					ymin1 = point1.y;
				if (point2.x > xmax1 && point2.x < xmax2)
					xmax1 = point2.x;
				if (point2.y > ymax1)
					ymax1 = point2.y;
			}

			if (point2.x < b*inputImg.cols&&point2.x > a*inputImg.cols)
			{
				if (point1.x < xmin2 && point1.x>xmin1)
					xmin2 = point1.x;
				if (point1.y < ymin2)
					ymin2 = point1.y;
				if (point2.x > xmax2 && point2.x < xmax3)
					xmax2 = point2.x;
				if (point2.y > ymax2)
					ymax2 = point2.y;
			}

			if (point2.x < inputImg.cols&&point2.x > b*inputImg.cols)
			{
				if (point1.x < xmin3 && point1.x>xmin2)
					xmin3 = point1.x;
				if (point1.y < ymin3)
					ymin3 = point1.y;
				if (point2.x > xmax3)
					xmax3 = point2.x;
				if (point2.y > ymax3)
					ymax3 = point2.y;
			}

			++iter;
		}
		else
		{
			iter = contours_set.erase(iter);
		}

	}

	if (xmin1 == a*inputImg.cols&& ymin1 == inputImg.rows&&xmax1 == 0 && ymax1== 0)
	{
		xmin1 = ymin1 = xmax1 = ymax1 = 0;
	}
	if (xmin2 == b*inputImg.cols&& ymin2 == inputImg.rows&& xmax2 == a*inputImg.cols&& ymax2 == 0)
	{
		xmin2 = ymin2 = xmax2 = ymax2 = 0;
	}
	if (xmin3 == inputImg.cols&&ymin3 == inputImg.rows&& xmax3 == b*inputImg.cols&& ymax3 == 0)
	{
		xmin3 = ymin3 = xmax3 = ymax3 = 0;
	}
	finalRect1= Rect(xmin1, ymin1, xmax1 - xmin1, ymax1 - ymin1);
	finalRect2 = Rect(xmin2, ymin2, xmax2 - xmin2, ymax2 - ymin2);
	finalRect3 = Rect(xmin3, ymin3, xmax3 - xmin3, ymax3 - ymin3);
	rectangle(inputImg, finalRect1, Scalar(0, 255, 0));
	rectangle(inputImg, finalRect2, Scalar(0, 255, 0));
	rectangle(inputImg, finalRect3, Scalar(0, 255, 0));
	imshow("Fire_Detection", inputImg);
}
 

到此这篇关于OpenCV 视频中的火焰检测识别的文章就介绍到这了,更多相关OpenCV 火焰检测识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python 使用Opencv实现目标检测与识别的示例代码

    在上章节讲述到图像特征检测与匹配 ,本章节是讲述目标检测与识别.后者是在前者的基础上进一步完善. 在本章中,我们使用HOG算法,HOG和SIFT.SURF同属一种类型的描述符.功能代码如下: import cv2 def is_inside(o, i): ox, oy, ow, oh = o ix, iy, iw, ih = i # 如果符合条件,返回True,否则返回False return ox > ix and oy > iy and ox + ow < ix + iw and o

  • OpenCV 视频中火焰检测识别实践

    主要完成两个视频中火焰的检测,主要结合RGB判据和HIS判据,设定合适的阈值条件,检测出火焰对应像素的区域,将原图二值化,经过中值滤波以及数学形态学的膨胀运算等图像处理,消除一些噪声及离散点,连通一些遗漏的区域.基于OpenCV的开源库,在VS2013平台上,实现了两个视频中火焰的检测. 利用OpenCV有强大的图像处理库,直接将图像分离为RGB三通道,设置条件限制,找到火焰的像素位置,将原图处理成二值图像.对于火焰检测,本文结合RGB判据和HIS判据,分割出火焰的区域.一般用于人眼观看的颜色模

  • 基于opencv实现视频中的颜色识别功能

    目录 颜色识别的原理 opencv中的颜色模型 颜色识别的实现(c++) 颜色识别的原理 opencv中的颜色模型 RGB RGB具有三个通道其,分别表示红色通道®,绿色通道(G),蓝色通道(B),3个通道在opencv中的取值均为0~255,它的颜色由3个通道的取值来共同决定,因此如果使用RGB图像来进行颜色的识别,会丢失很多的颜色. HSV HSV具有三个通道,其分别表示色调(H),饱和度(S),亮度(V),3个通道在opencv中的取值分别如下: H:0~180 S:0~255 V:0~2

  • OpenCV停车场车位实时检测项目实践

    目录 1. 写在前面 2. 整体流程梳理 3. 数据预处理 3.1 背景过滤 3.2 Canny边缘检测 3.3 停车场区域提取 3.4 霍夫变换检测直线 3.5 以列为单位,划分停车位 3.6 锁定每个停车位 3.7 为CNN生成预测图片 4. 模型的训练和预测 4.1 模型训练 4.2 模型预测 5. 小结 1. 写在前面 今天整理OpenCV入门的第三个实战小项目,前面的两篇文章整理了信用卡数字识别以及文档OCR扫描, 大部分用到的是OpenCV里面的基础图像预处理技术,比如轮廓检测,边缘

  • 50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

    目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶.视频监控.工业质检.医疗诊断等场景. 目标检测的根本任务就是将图片或者视频中感兴趣的目标提取出来,目标的识别可以基于颜色.纹理.形状.其中颜色属性运用十分广泛,也比较容易实现.下面就向大家分享一个我做的小实验---通过OpenCV的Python接口来实现从视频中进行颜色识别和跟踪. 下面就是我们完整的代码实现(已调试运行): i

  • opencv实现图片与视频中人脸检测功能

    本文实例为大家分享了opencv实现人脸检测功能的具体代码,供大家参考,具体内容如下 第一章:反思与总结 上一篇博客我相信自己将人脸检测中的AdaBoost算法解释的非常清晰了,以及如何训练人脸检测的强分类器:人脸检测中AdaBoost算法详解.事后,自我感觉对这个人脸检测还是不够具体,所以自己抽了一下午的时间用opencv实现图片与视频中的人脸检测,下面是我用vs2013加opencv4.9来实现的.做一下声明,我的代码是参考OpenCV实现人脸检测的一个博客写的,非常感谢这位博主,我学到了很

  • Python+OpenCV实现图片及视频中选定区域颜色识别

    近期,需要实现检测摄像头中指定坐标区域内的主体颜色,通过查阅大量相关的内容,最终实现代码及效果如下,具体的实现步骤在代码中都详细注释,代码还可以进一步优化,但提升有限. 主要实现过程:按不同颜色的取值范围,对图像进行循环遍历,转换为灰度图,将本次遍历的颜色像素转换为白色,对白色部分进行膨胀处理,使其更加连续,计算白色部分外轮廓包围的面积累加求和,比较每种颜色围起来面积,保存最大值及其颜色,所有颜色遍历完后,返回最大值对应的颜色,显示在图像上 如果有类似的颜色识别的任务,可参考以下代码修改后实现具

  • Android OpenCV基础API清晰度亮度识别检测

    目录 背景 基础知识 主要Api - 加载图片 imread Utils.bitmapToMat 主要API - 写入图片 端侧常用分析方法 亮度检测 清晰度检测 最后 背景 工作中遇到业务诉求是通过OpenCV对图片进行一些判断操作和优化,这里是看了部分不错的文章,希望总结一个自己的学习过程,温故而知新,有不对的地方可以评论区指出,小白学习海涵. 基础知识 Mat在OpenCV中是非常重要的存在,后续各个API都是在Mat的基础上去做文章,Mat 是Matrix(矩阵)的缩写 ... inli

  • Python基于OpenCV实现视频的人脸检测

    本文实例为大家分享了基于OpenCV实现视频的人脸检测具体代码,供大家参考,具体内容如下 前提条件 1.摄像头 2.已安装Python和OpenCV3 代码 import cv2 import sys import logging as log import datetime as dt from time import sleep cascPath = "haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeCla

  • Android 中使用 dlib+opencv 实现动态人脸检测功能

    1 概述 完成 Android 相机预览功能以后,在此基础上我使用 dlib 与 opencv 库做了一个关于人脸检测的 demo.该 demo 在相机预览过程中对人脸进行实时检测,并将检测到的人脸用矩形框描绘出来.具体实现原理如下: 采用双层 View,底层的 TextureView 用于预览,程序从 TextureView 中获取预览帧数据,然后调用 dlib 库对帧数据进行处理,最后将检测结果绘制在顶层的 SurfaceView 中. 2 项目配置 由于项目中用到了 dlib 与 open

  • 基于opencv和pillow实现人脸识别系统(附demo)

    目录 一.人脸检测和数据收集 二.训练识别器 三.人脸识别和显示 本文不涉及分类器.训练识别器等算法原理,仅包含对其应用(未来我也会写自己对机器学习算法原理的一些观点和了解) 首先我们需要知道的是利用现有框架做一个人脸识别系统并不难,然后就开始我们的系统开发吧. 我们的系统主要分为三个部分,然后我还会提出对补获图片不能添加中文的解决方案.我们需要完成的任务:1.人脸检测和数据收集2.训练识别器3.人脸识别和显示 在读此篇文章之前我相信你已经做了python环境部署和opencv模块的下载安装工作

随机推荐