pytorch 自定义参数不更新方式

nn.Module中定义参数:不需要加cuda,可以求导,反向传播

class BiFPN(nn.Module):
  def __init__(self, fpn_sizes):

  self.w1 = nn.Parameter(torch.rand(1))

  print("no---------------------------------------------------",self.w1.data, self.w1.grad)

下面这个例子说明中间变量可能没有梯度,但是最终变量有梯度:

cy1 cd都有梯度

import torch

xP=torch.Tensor([[ 3233.8557, 3239.0657, 3243.4355, 3234.4507, 3241.7087,
     3243.7292, 3234.6826, 3237.6609, 3249.7937, 3244.8623,
     3239.5349, 3241.4626, 3251.3457, 3247.4263, 3236.4924,
     3251.5735, 3246.4731, 3242.4692, 3239.4958, 3247.7283,
     3251.7134, 3249.0237, 3247.5637],
    [ 1619.9011, 1619.7140, 1620.4883, 1620.0642, 1620.2191,
     1619.9796, 1617.6597, 1621.1522, 1621.0869, 1620.9725,
     1620.7130, 1620.6071, 1620.7437, 1621.4825, 1620.5107,
     1621.1519, 1620.8462, 1620.5944, 1619.8038, 1621.3364,
     1620.7399, 1621.1178, 1618.7080],
    [ 1619.9330, 1619.8542, 1620.5176, 1620.1167, 1620.1577,
     1620.0579, 1617.7155, 1621.1718, 1621.1338, 1620.9572,
     1620.6288, 1620.6621, 1620.7074, 1621.5305, 1620.5656,
     1621.2281, 1620.8346, 1620.6021, 1619.8228, 1621.3936,
     1620.7616, 1621.1954, 1618.7983],
    [ 1922.6078, 1922.5680, 1923.1331, 1922.6604, 1922.9589,
     1922.8818, 1920.4602, 1923.8107, 1924.0142, 1923.6907,
     1923.4465, 1923.2820, 1923.5728, 1924.4071, 1922.8853,
     1924.1107, 1923.5465, 1923.5121, 1922.4673, 1924.1871,
     1923.6248, 1923.9086, 1921.9496],
    [ 1922.5948, 1922.5311, 1923.2850, 1922.6613, 1922.9734,
     1922.9271, 1920.5950, 1923.8757, 1924.0422, 1923.7318,
     1923.4889, 1923.3296, 1923.5752, 1924.4948, 1922.9866,
     1924.1642, 1923.6427, 1923.6067, 1922.5214, 1924.2761,
     1923.6636, 1923.9481, 1921.9005]])

yP=torch.Tensor([[ 2577.7729, 2590.9868, 2600.9712, 2579.0195, 2596.3684,
     2602.2771, 2584.0305, 2584.7749, 2615.4897, 2603.3164,
     2589.8406, 2595.3486, 2621.9116, 2608.2820, 2582.9534,
     2619.2073, 2607.1233, 2597.7888, 2591.5735, 2608.9060,
     2620.8992, 2613.3511, 2614.2195],
    [ 673.7830,  693.8904,  709.2661,  675.4254,  702.4049,
      711.2085,  683.1571,  684.6160,  731.3878,  712.7546,
      692.3011,  701.0069,  740.6815,  720.4229,  681.8199,
      736.9869,  718.5508,  704.3666,  695.0511,  721.5912,
      739.6672,  728.0584,  729.3143],
    [ 673.8367,  693.9529,  709.3196,  675.5266,  702.3820,
      711.2159,  683.2151,  684.6421,  731.5291,  712.6366,
      692.1913,  701.0057,  740.6229,  720.4082,  681.8656,
      737.0168,  718.4943,  704.2719,  695.0775,  721.5616,
      739.7233,  728.1235,  729.3387],
    [ 872.9419,  891.7061,  905.8004,  874.6565,  899.2053,
      907.5082,  881.5528,  883.0028,  926.3083,  908.9742,
      890.0403,  897.8606,  934.6913,  916.0902,  880.4689,
      931.3562,  914.4233,  901.2154,  892.5759,  916.9590,
      933.9291,  923.0745,  924.4461],
    [ 872.9661,  891.7683,  905.8128,  874.6301,  899.2887,
      907.5155,  881.6916,  883.0234,  926.3242,  908.9561,
      890.0731,  897.9221,  934.7324,  916.0806,  880.4300,
      931.3933,  914.5662,  901.2715,  892.5501,  916.9894,
      933.9813,  923.0823,  924.3654]])

shape=[4000, 6000]
cx,cy1=torch.rand(1,requires_grad=True),torch.rand(1,requires_grad=True)

cd=torch.rand(1,requires_grad=True)
ox,oy=cx,cy1
print('cx:{},cy:{}'.format(id(cx),id(cy1)))
print('ox:{},oy:{}'.format(id(ox),id(oy)))
cx,cy=cx*shape[1],cy1*shape[0]
print('cx:{},cy:{}'.format(id(cx),id(cy)))
print('ox:{},oy:{}'.format(id(ox),id(oy)))
distance=torch.sqrt(torch.pow((xP-cx),2)+torch.pow((yP-cy),2))
mean=torch.mean(distance,1)
starsFC=cd*torch.pow((distance-mean[...,None]),2)
loss=torch.sum(torch.mean(starsFC,1).squeeze(),0)
loss.backward()
print(loss)
print(cx)
print(cy1)
print("cx",cx.grad)
print("cy",cy1.grad)
print("cd",cd.grad)
print(ox.grad)
print(oy.grad)
print('cx:{},cy:{}'.format(id(cx),id(cy)))
print('ox:{},oy:{}'.format(id(ox),id(oy)))

以上这篇pytorch 自定义参数不更新方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch 数据处理:定义自己的数据集合实例

    数据处理 版本1 #数据处理 import os import torch from torch.utils import data from PIL import Image import numpy as np #定义自己的数据集合 class DogCat(data.Dataset): def __init__(self,root): #所有图片的绝对路径 imgs=os.listdir(root) self.imgs=[os.path.join(root,k) for k in imgs

  • pytorch 自定义数据集加载方法

    pytorch 官网给出的例子中都是使用了已经定义好的特殊数据集接口来加载数据,而且其使用的数据都是官方给出的数据.如果我们有自己收集的数据集,如何用来训练网络呢?此时需要我们自己定义好数据处理接口.幸运的是pytroch给出了一个数据集接口类(torch.utils.data.Dataset),可以方便我们继承并实现自己的数据集接口. torch.utils.data torch的这个文件包含了一些关于数据集处理的类. class torch.utils.data.Dataset: 一个抽象类

  • pytorch sampler对数据进行采样的实现

    PyTorch中还单独提供了一个sampler模块,用来对数据进行采样.常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据.默认的是采用SequentialSampler,它会按顺序一个一个进行采样.这里介绍另外一个很有用的采样方法: WeightedRandomSampler,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样. 构建WeightedRandomSampler时

  • pytorch中的自定义数据处理详解

    pytorch在数据中采用Dataset的数据保存方式,需要继承data.Dataset类,如果需要自己处理数据的话,需要实现两个基本方法. :.getitem:返回一条数据或者一个样本,obj[index] = obj.getitem(index). :.len:返回样本的数量 . len(obj) = obj.len(). Dataset 在data里,调用的时候使用 from torch.utils import data import os from PIL import Image 数

  • Pytorch 数据加载与数据预处理方式

    数据加载分为加载torchvision.datasets中的数据集以及加载自己使用的数据集两种情况. torchvision.datasets中的数据集 torchvision.datasets中自带MNIST,Imagenet-12,CIFAR等数据集,所有的数据集都是torch.utils.data.Dataset的子类,都包含 _ _ len _ (获取数据集长度)和 _ getItem _ _ (获取数据集中每一项)两个子方法. Dataset源码如上,可以看到其中包含了两个没有实现的子

  • pytorch 自定义参数不更新方式

    nn.Module中定义参数:不需要加cuda,可以求导,反向传播 class BiFPN(nn.Module): def __init__(self, fpn_sizes): self.w1 = nn.Parameter(torch.rand(1)) print("no---------------------------------------------------",self.w1.data, self.w1.grad) 下面这个例子说明中间变量可能没有梯度,但是最终变量有梯度

  • springboot如何获取yml文件的自定义参数

    目录 如何获取yml的自定义参数 需求 实现方式 自定义yml文件,获取配置参数 操作yml文件依赖 mqtt链接参数,及读取yml文件工具 MqttParams.yml 文件位置 如何获取yml的自定义参数 需求 通过yml文件配置参数,在需要的地方获取并使用参数 实现方式 方式一: 先上要获取的配置参数,在用到参数的位置获取yml文件里面配好的值,如果就一两个地方用到,那直接写死也不是不行,但是最好通过配置文件的方式,万一参数变了,只要改配置文件就行,业务代码不用动 yml配置参数: Con

  • Pytorch反向求导更新网络参数的方法

    方法一:手动计算变量的梯度,然后更新梯度 import torch from torch.autograd import Variable # 定义参数 w1 = Variable(torch.FloatTensor([1,2,3]),requires_grad = True) # 定义输出 d = torch.mean(w1) # 反向求导 d.backward() # 定义学习率等参数 lr = 0.001 # 手动更新参数 w1.data.zero_() # BP求导更新参数之前,需先对导

  • Pytorch 实现自定义参数层的例子

    注意,一般官方接口都带有可导功能,如果你实现的层不具有可导功能,就需要自己实现梯度的反向传递. 官方Linear层: class Linear(Module): def __init__(self, in_features, out_features, bias=True): super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Pa

  • pytorch自定义二值化网络层方式

    任务要求: 自定义一个层主要是定义该层的实现函数,只需要重载Function的forward和backward函数即可,如下: import torch from torch.autograd import Function from torch.autograd import Variable 定义二值化函数 class BinarizedF(Function): def forward(self, input): self.save_for_backward(input) a = torch

  • spring boot 自定义参数过滤器,把传入的空字符转换成null方式

    目录 spring boot 滤器,把传入的空字符转换成null 自定义参数处理器 应用启动类 springboot过滤器对请求参数去空格处理 使用 FilterRegistrationBean 注册过滤器 使用@WebFilter注册过滤器 增加JSON字符串的处理 spring boot 滤器,把传入的空字符转换成null 废话不多说直接上代码 自定义参数处理器 public class MyStringArgumentResolver extends AbstractNamedValueM

  • jackson在springboot中的使用方式-自定义参数转换器

    目录 springboot jackson使用-自定义参数转换器 要实现的功能 思路 关键代码 Jackson自定义转换器 @JsonDeserialize注解源码 以日期类型为例 自定义转换方法 springboot jackson使用-自定义参数转换器 springboot中默认使用jackson,且实现了很多参数转换器,其中就有EnumToStringConverter和StringToEnumConverterFactory,用于字符串和枚举的互转.但是是根据枚举名称互转. 要实现的功能

  • 使用自定义注解进行restful请求参数的校验方式

    目录 自定义注解进行restful请求参数的校验 1.首先我们使用@interface定义一个注解 2.实现注解实现类(和@interface定义的注解在同一个包下) 3.在需要校验的对象的字段上加上@ByteLength注解 springboot小技巧:restful接口参数校验,自定义校验规则 restful风格接口参数校验 自定义参数校验注解方法 自定义注解进行restful请求参数的校验 在使用springmvc开发的时候,我们通常会在controller中的方法参数实体类中加上@Not

  • pytorch自定义初始化权重的方法

    在常见的pytorch代码中,我们见到的初始化方式都是调用init类对每层所有参数进行初始化.但是,有时我们有些特殊需求,比如用某一层的权重取优化其它层,或者手动指定某些权重的初始值. 核心思想就是构造和该层权重同一尺寸的矩阵去对该层权重赋值.但是,值得注意的是,pytorch中各层权重的数据类型是nn.Parameter,而不是Tensor或者Variable. import torch import torch.nn as nn import torch.optim as optim imp

  • Pytorch: 自定义网络层实例

    自定义Autograd函数 对于浅层的网络,我们可以手动的书写前向传播和反向传播过程.但是当网络变得很大时,特别是在做深度学习时,网络结构变得复杂.前向传播和反向传播也随之变得复杂,手动书写这两个过程就会存在很大的困难.幸运地是在pytorch中存在了自动微分的包,可以用来解决该问题.在使用自动求导的时候,网络的前向传播会定义一个计算图(computational graph),图中的节点是张量(tensor),两个节点之间的边对应了两个张量之间变换关系的函数.有了计算图的存在,张量的梯度计算也

随机推荐