使用pandas或numpy处理数据中的空值(np.isnan()/pd.isnull())

最近在做数据处理的时候,遇到个让我欲仙欲死的问题,那就是数据中的空值该如何获取。

我的目的本来是获取数据中的所有非零且非空值,然后再计算获得到的所有数据计算均值,再用均值把0和空值填上。这个操作让我意识到了i is None/np.isnan(i)/i.isnull()之间的差别,再此做简单介绍:

1.关于np.nan:

先明确一个问题,即空值的产生只有np.nan()一种方法。

# np.nan()的一些奇妙性质:

np.nan == np.nan
>>> False

np.isnan(np.nan)
>>> True

np.nan is None
>>> False

type(np.nan)
>>> float

总结一下:

np.nan不是一个“空”对象,用 i is None判断是False;

对某个值是否为空值进行判断,只能用np.isnan(i)函数,万万不可用 i == np.nan()来做,否则你会死的很惨的,因为空值并不能用判断相等的“==”正确识别(上例前两条);

np.nan非空对象,其类型为基本数据类型float(是不是很神奇,我也不知道为什么要这样设计)

2.np.isnan()和pd.isnull()何时使用:

# 首先创建一个DataFrame:
bb = pd.DataFrame({'a':[0,1,2,np.nan]})
bb

>>>     a
    0 0.0
    1 1.0
    2 2.0
    3 NaN

# 先测试一下np.isnan()
np.isnan(bb)
>>>     a
    0 False
    1 False
    2 False
    3 True
# 值得一提的是,如果想获悉整个DataFrame有无空值,可以在此基础上这样做:

np.isnan(bb).all()
>>> a    False
    dtype: bool          # 这行是指返回值的dtype

# 再测试一下isnull()
pd.isnull(bb)
>>>     a
    0 False
    1 False
    2 False
    3 True

由上可见,其实np.isnan()和pd.isnull()都可以对不论是DataFrame、Python list还是仅仅一个数值进行空值检测。但一般在实际应用中,np.isnan()多用于单个值的检验,pd.isnull()用于对一个DataFrame或Series(整体)的检验。

此外,根据pandas官方文档和源代码,pandas提供的另一个函数pd.isna()与pd.isnull()完全一样。

上面提到的any()/all()函数,请见pandas文档:

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.all.html#pandas.DataFrame.all

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.any.html#pandas.DataFrame.any

其他与空值检测或删除相关的函数还有:notna()、fillna()、dropna()等等。实战中应灵活使用。

补充:numpy中的nan(判断一个元素等于nan, 及nan安全函数 )

Nunpy中的NaN

多种方式创建nan(空值)

import numpy as np
np.nan
nan
np.NaN
nan
np.NAN
nan

判断是否存在空值

x = np.array([1, 1, 8, np.nan, 10])
np.nan in x

False
np.isin(np.nan, x)
array(False)
1 in x
True
np.isin(1, x)
array(True)
np.isnan(x)
array([False, False, False,  True, False])
x[-2] == np.nan, np.isnan(x[-2])
(False, True)

在np中nan需要用isnan这个函数来识别,还要注意:

x
array([ 1.,  1.,  8., nan, 10.])

x 中所有的元素都变成了浮点型,这是因为nan是浮点型的。

nan安全函数

np.mean(x)
nan
np.nanmean(x)
5.0

此外max, min, median等都是默认非nan安全的,需要加上nan来标记nan安全。

ps:pandas中是默认nan安全的。

补充:Python 处理DataFrame数据 pd.isnull() np.isnan()的方式

数据处理时,经常会遇到处理数据中的空值,涉及几个常用函数,pd.isnull(),pd.notnull(),np.isnan(),pd.notna(),pd.isna(),pd.fillna()、pd.dropna()等等.

本文关注pd.isnull(),pd.notnull(),np.isnan(),pd.notna(),pd.isna()。

总结:

由下可知,np.isnan()和pd.isnull()都可以对不论是DataFrame、Python list还是仅仅一个数值进行空值检测。但一般在实际应用中,np.isnan()多用于单个值的检验,pd.isnull()用于对一个DataFrame或Series(整体)的检验。

1.pd.isnull()

pd.isnull()可以对不论是DataFrame、Python list还是仅仅一个数值进行空值检测。但一般在实际应用中,pd.isnull()用于对一个DataFrame或Series(整体)的检验。

此外,根据pandas官方文档和源代码,pandas提供的另一个函数pd.isna()与pd.isnull()完全一样。

# 首先创建一个DataFrame:
df = pd.DataFrame({'a':[0,1,2,np.nan]})
df

>>>     a
    0 0.0
    1 1.0
    2 2.0
    3 NaN

# 测试isnull()
pd.isnull(df)
>>>     a
    0 False
    1 False
    2 False
    3 True

# 测试isna()
pd.isna(df)
>>>     a
    0 False
    1 False
    2 False
    3 True

# 测试notnull()
pd.notnull(df)
>>>     a
    0 True
    1 True
    2 True
    3 False

# 测试notna()
pd.notna(df)
>>>     a
    0 True
    1 True
    2 True
    3 False

2.np.nan()

判断是否为np.nan()。

np.nan不是一个“空”对象,对某个值是否为空值进行判断,只能用np.isnan(i)函数。

np.nan非空对象,其类型为基本数据类型float。

np.nan()可以对不论是DataFrame、Python list还是仅仅一个数值进行空值检测。但一般在实际应用中,np.nan()多用于单个值的检验。

np.nan == np.nan
>>> False

np.isnan(np.nan)
>>> True

type(np.nan)
>>> float

np.nan is None
>>> False

np.isnan(df)
>>>     a
    0 False
    1 False
    2 False
    3 True

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python pandas消除空值和空格以及 Nan数据替换方法

    在人工采集数据时,经常有可能把空值和空格混在一起,一般也注意不到在本来为空的单元格里加入了空格.这就给做数据处理的人带来了麻烦,因为空值和空格都是代表的无数据,而pandas中Series的方法notnull()会把有空格的数据也纳入进来,这样就不能完整地得到我们想要的数据了,这里给出一个简单的方法处理该问题. 方法1: 既然我们认为空值和空格都代表无数据,那么可以先得到这两种情况下的布尔数组. 这里,我们的DataFrame类型的数据集为df,其中有一个变量VIN,那么取得空值和空格的布尔数组

  • Python pandas库中的isnull()详解

    问题描述 python的pandas库中有一个十分便利的isnull()函数,它可以用来判断缺失值,我们通过几个例子学习它的使用方法. 首先我们创建一个dataframe,其中有一些数据为缺失值. import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(10,99,size=(10,5))) df.iloc[4:6,0] = np.nan df.iloc[5:7,2] = np.nan df.iloc[

  • pandas 缺失值与空值处理的实现方法

    1.相关函数 df.dropna() df.fillna() df.isnull() df.isna() 2.相关概念 空值:在pandas中的空值是"" 缺失值:在dataframe中为nan或者naT(缺失时间),在series中为none或者nan即可 3.函数具体解释 DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) 函数作用:删除含有空值的行或列 axis:维度,axis=

  • 浅谈pandas中对nan空值的判断和陷阱

    pandas基于numpy,所以其中的空值nan和numpy.nan是等价的.numpy中的nan并不是空对象,其实际上是numpy.float64对象,所以我们不能误认为其是空对象,从而用bool(np.nan)去判断是否为空值,这是不对的. 对于pandas中的空值,我们该如何判断,并且有哪些我们容易掉进去的陷阱,即不能用怎么样的方式去判断呢? 可以判断pandas中单个空值对象的方式: 1.利用pd.isnull(),pd.isna(); 2.利用np.isnan(); 3.利用is表达式

  • 使用pandas或numpy处理数据中的空值(np.isnan()/pd.isnull())

    最近在做数据处理的时候,遇到个让我欲仙欲死的问题,那就是数据中的空值该如何获取. 我的目的本来是获取数据中的所有非零且非空值,然后再计算获得到的所有数据计算均值,再用均值把0和空值填上.这个操作让我意识到了i is None/np.isnan(i)/i.isnull()之间的差别,再此做简单介绍: 1.关于np.nan: 先明确一个问题,即空值的产生只有np.nan()一种方法. # np.nan()的一些奇妙性质: np.nan == np.nan >>> False np.isnan

  • python pandas处理excel表格数据的常用方法总结

    目录 前言 1.读取xlsx表格:pd.read_excel() 2.获取表格的数据大小:shape 3.索引数据的方法:[ ] / loc[] / iloc[] 4.判断数据为空:np.isnan() / pd.isnull() 5.查找符合条件的数据 6.修改元素值:replace() 7.增加数据:[ ] 8.删除数据:del() / drop() 9.保存到excel文件:to_excel() 总结 前言 最近助教改作业导出的成绩表格跟老师给的名单顺序不一致,脑壳一亮就用pandas写了

  • Python实战基础之Pandas统计某个数据列的空值个数

    目录 一.实战场景 二.主要知识点 三.菜鸟实战 1.创建 python 文件 2.运行结果 补充:Pandas检查是否有空值.处理空值 总结 一.实战场景 实战场景:Pandas 如何统计某个数据列的空值个数 二.主要知识点 文件读写 基础语法 Pandas numpy 三.菜鸟实战 马上安排! 1.创建 python 文件 """ 对如下DF,设置两个单元格的值 ·使用iloc 设置(3,B)的值是nan ·使用loc设置(8,D)的值是nan ""&

  • 使用pandas将numpy中的数组数据保存到csv文件的方法

    接触pandas之后感觉它的很多功能似乎跟numpy有一定的重复,尤其是各种运算.不过,简单的了解之后发现在数据管理上pandas有着更为丰富的管理方式,其中一个很大的优点就是多出了对数据文件的管理. 如果想保存numpy中的数组元素到一个文件中,通过纯Python的文件写入当然是可以实现的,但是总觉得是少了一点便捷性.在这方面,pandas工具的使用就会让工作方便很多.下面通过一个简单的小例子来演示一下. 首先,创建numpy中的数组. In [18]: arr1 = np.arange(10

  • 用Python的pandas框架操作Excel文件中的数据教程

    引言 本文的目的,是向您展示如何使用pandas来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要.作为额外的福利,我将会进行一些模糊字符串匹配,以此来展示一些小花样,以及展示pandas是如何利用完整的Python模块系统去做一些在Python中是简单,但在Excel中却很复杂的事情的. 有道理吧?让我们开始吧. 为某行添加求和项 我要介绍的第一项任务是把某几列相加然后添加一个总和栏. 首先我们将excel 数据 导入到pa

  • 在Python中利用Pandas库处理大数据的简单介绍

    在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章<别老扯什么Hadoop了,你的数据根本不够大>指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择.这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据: 硬件环境         CPU:3.5 GHz Intel Core i7         内存:32 GB HDDR 3 1600 MHz         硬

  • Python 中pandas索引切片读取数据缺失数据处理问题

    引入 numpy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢? numpy能够帮我们处理处理数值型数据,但是这还不够 很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等 比如:我们通过爬虫获取到了存储在数据库中的数据 比如:之前youtube的例子中除了数值之外还有国家的信息,视频的分类(tag)信息,标题信息等 所以,numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我

  • python使用pandas抽样训练数据中某个类别实例

    废话真的一句也不想多说,直接看代码吧! # -*- coding: utf-8 -*- import numpy from sklearn import metrics from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn import linear_model from sklearn.datasets import load_iris from sklearn.

  • python pandas库读取excel/csv中指定行或列数据

    目录 引言 1.根据index查询 2.已知数据在第几行找到想要的数据 3.根据条件查询找到指定行数据 4.找出指定列 5.找出指定的行和指定的列 6.在规定范围内找出符合条件的数据 总结 引言 关键!!!!使用loc函数来查找. 话不多说,直接演示: 有以下名为try.xlsx表: 1.根据index查询 条件:首先导入的数据必须的有index 或者自己添加吧,方法简单,读取excel文件时直接加index_col 代码示例: import pandas as pd #导入pandas库 ex

  • pandas 对日期类型数据的处理方法详解

    pandas 的日期/时间类型有如下几种: Concept Scalar Class Array Class pandas Data Type Primary Creation Method Date times Timestamp DatetimeIndex datetime64[ns] or datetime64[ns, tz] to_datetime or date_range Time deltas Timedelta TimedeltaIndex timedelta64[ns] to_

随机推荐