Python手拉手教你爬取贝壳房源数据的实战教程

一、爬虫是什么?

在进行大数据分析或者进行数据挖掘的时候,数据源可以从某些提供数据统计的网站获得,也可以从某些文献或内部资料中获得,但是这些获得数据的方式,有时很难满足我们对数据的需求,而手动从互联网中去寻找这些数据,则耗费的精力过大。此时就可以利用爬虫技术,自动地从互联网中获取我们感兴趣的数据内容,并将这些数据内容爬取回来,作为我们的数据源,从而进行更深层次的数据分析,并获得更多有价值的信息。 在使用爬虫前首先要了解爬虫所需的库(requests)或者( urllib.request ),该库是为了爬取数据任务而创建的。

二、使用步骤

1.引入库

代码如下(示例):

import os
import urllib.request
import random
import time
class BeikeSpider:
    def __init__(self, save_path="./beike"):
        """
        贝壳爬虫构造函数
        :param save_path: 网页保存目录
        """

2.读入数据

代码如下 :

# 网址模式
        self.url_mode = "http://{}.fang.ke.com/loupan/pg{}/"
        # 需爬取的城市
        self.cities = ["cd", "sh", "bj"]
        # 每个城市爬取的页数
        self.total_pages = 20
        # 让爬虫程序随机休眠5-10秒
        self.sleep = (5, 10)
        # 网页下载保存根目录
        self.save_path = save_path
        # 设置用户代理,是爬虫程序伪装成浏览器
        self.headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36"}
        # 代理IP的信息
        self.proxies = [
            {"https": "123.163.67.50:8118"},
            {"https": "58.56.149.198:53281"},
            {"https": "14.115.186.161:8118"}
        ]

        # 创建保存目录
        if not os.path.exists(self.save_path):
            os.makedirs(self.save_path)
   def crawl(self):
        """
        执行爬取任务
        :return: None
        """

该处使用的url网络请求的数据。

3.随机选择一个ip地址构建代理服务器

 for city in self.cities:
            print("正在爬取的城市:", city)
            # 每个城市的网页用单独的目录存放
            path = os.path.join(self.save_path, city)
            if not os.path.exists(path):
                os.makedirs(path)

            for page in range(1, self.total_pages+1):
                # 构建完整的url
                url = self.url_mode.format(city, page)
                # 构建Request对象, 将url和请求头放入对象中
                request = urllib.request.Request(url, headers=self.headers)

                # 随机选择一个代理IP
                proxy = random.choice(self.proxies)
                # 构建代理服务器处理器
                proxy_handler = urllib.request.ProxyHandler(proxy)
                # 构建opener
                opener = urllib.request.build_opener(proxy_handler)
                # 使用构建的opener打开网页
                response = opener.open(request)
                html = response.read().decode("utf-8")
                # 网页保存文件名(包含路径)
                filename = os.path.join(path, str(page)+".html")

                # 保存网页
                self.save(html, filename)
                print("第%d页保存成功!" % page)

                # 随机休眠
                sleep_time = random.randint(self.sleep[0], self.sleep[1])
                time.sleep(sleep_time)

该处除随机选择ip地址以外还会限制爬取数据的速度,避免暴力爬取。

4.运行代码

def save(self, html, filename):
        """
        保存下载的网页
        :param html: 网页内容
        :param filename: 保存的文件名
        :return:
        """

        f = open(filename, 'w', encoding="utf-8")
        f.write(html)
        f.close()

    def parse(self):
        """
        解析网页数据
        :return:
        """
        pass

if __name__ == "__main__":
    spider = BeikeSpider()
    spider.crawl()

运行结果就会这样,会保存在你的文件夹中。

总结

这里对文章进行总结:今天分析这波代码目的是为了让大家清晰明亮的了解python爬虫的运作,和大家一起学习
以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而urllib.request提供了大量能使我们快速便捷地爬取数据。

(0)

相关推荐

  • Python爬取股票信息,并可视化数据的示例

    前言 截止2019年年底我国股票投资者数量为15975.24万户, 如此多的股民热衷于炒股,首先抛开炒股技术不说, 那么多股票数据是不是非常难找, 找到之后是不是看着密密麻麻的数据是不是头都大了? 今天带大家爬取雪球平台的股票数据, 并且实现数据可视化 先看下效果图 基本环境配置 python 3.6 pycharm requests csv time 目标地址 https://xueqiu.com/hq 爬虫代码 请求网页 import requests url = 'https://xueq

  • Python爬取数据保存为Json格式的代码示例

    python爬取数据保存为Json格式 代码如下: #encoding:'utf-8' import urllib.request from bs4 import BeautifulSoup import os import time import codecs import json #找到网址 def getDatas(): # 伪装 header={'User-Agent':"Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.1

  • Python爬虫实例——爬取美团美食数据

    1.分析美团美食网页的url参数构成 1)搜索要点 美团美食,地址:北京,搜索关键词:火锅 2)爬取的url https://bj.meituan.com/s/%E7%81%AB%E9%94%85/ 3)说明 url会有自动编码中文功能.所以火锅二字指的就是这一串我们不认识的代码%E7%81%AB%E9%94%85. 通过关键词城市的url构造,解析当前url中的bj=北京,/s/后面跟搜索关键词. 这样我们就可以了解到当前url的构造. 2.分析页面数据来源(F12开发者工具) 开启F12开发

  • Python3实现的爬虫爬取数据并存入mysql数据库操作示例

    本文实例讲述了Python3实现的爬虫爬取数据并存入mysql数据库操作.分享给大家供大家参考,具体如下: 爬一个电脑客户端的订单.罗总推荐,抓包工具用的是HttpAnalyzerStdV7,与chrome自带的F12类似.客户端有接单大厅,罗列所有订单的简要信息.当单子被接了,就不存在了.我要做的是新出订单就爬取记录到我的数据库zyc里. 设置每10s爬一次. 抓包工具页面如图: 首先是爬虫,先找到数据存储的页面,再用正则爬出. # -*- coding:utf-8 -*- import re

  • 基于Python爬取股票数据过程详解

    基本环境配置 python 3.6 pycharm requests csv time 相关模块pip安装即可 目标网页 分析网页 一切的一切都在图里 找到数据了,直接请求网页,解析数据,保存数据 请求网页 import requests url = 'https://xueqiu.com/service/v5/stock/screener/quote/list' response = requests.get(url=url, params=params, headers=headers, c

  • Python如何爬取实时变化的WebSocket数据的方法

    一.前言 作为一名爬虫工程师,在工作中常常会遇到爬取实时数据的需求,比如体育赛事实时数据.股市实时数据或币圈实时变化的数据.如下图: Web 领域中,用于实现数据'实时'更新的手段有轮询和 WebSocket 这两种.轮询指的是客户端按照一定时间间隔(如 1 秒)访问服务端接口,从而达到 '实时' 的效果,虽然看起来数据像是实时更新的,但实际上它有一定的时间间隔,并不是真正的实时更新.轮询通常采用 拉 模式,由客户端主动从服务端拉取数据. WebSocket 采用的是 推 模式,由服务端主动将数

  • 实例讲解Python爬取网页数据

    一.利用webbrowser.open()打开一个网站: >>> import webbrowser >>> webbrowser.open('http://i.firefoxchina.cn/?from=worldindex') True 实例:使用脚本打开一个网页. 所有Python程序的第一行都应以#!python开头,它告诉计算机想让Python来执行这个程序.(我没带这行试了试,也可以,可能这是一种规范吧) 1.从sys.argv读取命令行参数:打开一个新的文

  • python实现模拟器爬取抖音评论数据的示例代码

    目标: 由于之前和朋友聊到抖音评论的爬虫,demo做出来之后一直没整理,最近时间充裕后,在这里做个笔记. 提示:大体思路 通过fiddle + app模拟器进行抖音抓包,使用python进行数据整理 安装需要的工具: python3 下载 fiddle 安装及配置 手机模拟器下载 抖音部分: 模拟器下载好之后, 打开模拟器 在应用市场下载抖音 对抖音进行fiddle配置,配置成功后就可以当手机一样使用了 一.工具配置及抓包: 我们随便打开一个视频之后,fiddle就会刷新新的数据包 在json中

  • python爬虫爬取网页表格数据

    用python爬取网页表格数据,供大家参考,具体内容如下 from bs4 import BeautifulSoup import requests import csv import bs4 #检查url地址 def check_link(url): try: r = requests.get(url) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: print('无法链接服务器!!!')

  • Python手拉手教你爬取贝壳房源数据的实战教程

    一.爬虫是什么? 在进行大数据分析或者进行数据挖掘的时候,数据源可以从某些提供数据统计的网站获得,也可以从某些文献或内部资料中获得,但是这些获得数据的方式,有时很难满足我们对数据的需求,而手动从互联网中去寻找这些数据,则耗费的精力过大.此时就可以利用爬虫技术,自动地从互联网中获取我们感兴趣的数据内容,并将这些数据内容爬取回来,作为我们的数据源,从而进行更深层次的数据分析,并获得更多有价值的信息. 在使用爬虫前首先要了解爬虫所需的库(requests)或者( urllib.request ),该库

  • python爬虫之Appium爬取手机App数据及模拟用户手势

    目录 Appium 模拟操作 屏幕滑动 屏幕点击 屏幕拖动 屏幕拖拽 文本输入 动作链 实战:爬取微博首页信息 Appium 在前文的讲解中,我们学会了如何安装Appium,以及一些基础获取App元素内容的方式.但认真看过前文的读者,肯定在博主获取元素的时候观察到了一个现象. 那就是手机App的内容并不是一次性加载出来的,比如大多数Android手机列表ListView,都是异步加载,也就是你滑动到那个位置,它才会显示出它的内容. 也就是说,我们前面爬取微博首页全部信息的时候,如果你不滑动先加载

  • 教你如何使用Python快速爬取需要的数据

    一.基础第三方库使用 1.基本使用方法 """例""" from urllib import request response = request.urlopen(r'http://bbs.pinggu.org/') #返回状态 200证明访问成功 print("返回状态码: "+str(response.status)) #读取页面信息转换文本并进行解码,如果本身是UTF-8就不要,具体看页面格式 #搜索"char

  • Python爬虫DOTA排行榜爬取实例(分享)

    1.分析网站 打开开发者工具,我们观察到排行榜的数据并没有在doc里 doc文档 在Javascript里我么可以看到下面代码: ajax的post方法异步请求数据 在 XHR一栏里,我们找到所请求的数据 json存储的数据 请求字段为: post请求字段 2.伪装浏览器,并将json数据存入excel里面 获取信息 将数据保存到excel中 3.结果展示 以上这篇Python爬虫DOTA排行榜爬取实例(分享)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python利用urllib实现爬取京东网站商品图片的爬虫实例

    本例程使用urlib实现的,基于python2.7版本,采用beautifulsoup进行网页分析,没有第三方库的应该安装上之后才能运行,我用的IDE是pycharm,闲话少说,直接上代码! # -*- coding: utf-8 -* import re import os import urllib import urllib2 from bs4 import BeautifulSoup def craw(url,page): html1=urllib2.urlopen(url).read(

  • 一个月入门Python爬虫学习,轻松爬取大规模数据

    Python爬虫为什么受欢迎 如果你仔细观察,就不难发现,懂爬虫.学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单.容易上手. 利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如: 知乎:爬取优质答案,为你筛选出各话题下最优质的内容. 淘宝.京东:抓取商品.评论及销量数据,对各种商品及用户的消费场景进行分析. 安居客.链家:抓取房产买卖及租售信息,分析房价变化趋势.做不同区域的房价分

  • Python下使用Scrapy爬取网页内容的实例

    上周用了一周的时间学习了Python和Scrapy,实现了从0到1完整的网页爬虫实现.研究的时候很痛苦,但是很享受,做技术的嘛. 首先,安装Python,坑太多了,一个个爬.由于我是windows环境,没钱买mac, 在安装的时候遇到各种各样的问题,确实各种各样的依赖. 安装教程不再赘述.如果在安装的过程中遇到 ERROR:需要windows c/c++问题,一般是由于缺少windows开发编译环境,晚上大多数教程是安装一个VisualStudio,太不靠谱了,事实上只要安装一个WindowsS

  • python爬取拉勾网职位数据的方法

    今天写的这篇文章是关于python爬虫简单的一个使用,选取的爬取对象是著名的招聘网站--拉钩网,由于和大家的职业息息相关,所以爬取拉钩的数据进行分析,对于职业规划和求职时的信息提供有很大的帮助. 完成的效果 爬取数据只是第一步,怎样使用和分析数据也是一大重点,当然这不是本次博客的目的,由于本次只是一个上手的爬虫程序,所以我们的最终目的只是爬取到拉钩网的职位信息,然后保存到Mysql数据库中.最后中的效果示意图如下: 控制台输入 数据库显示 准备工作 首先需要安装python,这个网上已经有很多的

  • python requests爬取高德地图数据的实例

    如下所示: 1.pip install requests 2.pip install lxml 3.pip install xlsxwriter import requests #想要爬必须引 from lxml import html #这个是用于页面爬取 import xlsxwriter#操作Excel表格库 workbook = xlsxwriter.Workbook('E:/test/test.xlsx')# 新建的Excel表格文档路径 worksheet = workbook.ad

随机推荐