Java实现平滑加权轮询算法之降权和提权详解

目录
  • 前言
  • 1.两个关键点
  • 2.代码实现
    • 2.1.服务节点类
    • 2.2.平滑轮询算法降权和提权
  • 3.分析结果
  • 4.结论

前言

上一篇讲了普通轮询、加权轮询的两种实现方式,重点讲了平滑加权轮询算法,并在文末留下了悬念:节点出现分配失败时降低有效权重值;成功时提高有效权重值(但不能大于weight值)

本文在平滑加权轮询算法的基础上讲,还没弄懂的可以看上一篇文章。

现在来模拟实现:平滑加权轮询算法的降权和提权

1.两个关键点

节点宕机时,降低有效权重值;

节点正常时,提高有效权重值(但不能大于weight值);

注意:降低或提高权重都是针对有效权重

2.代码实现

2.1.服务节点类

package com.yty.loadbalancingalgorithm.wrr;

/**
 * String ip:负载IP
 * final Integer weight:权重,保存配置的权重
 * Integer effectiveWeight:有效权重,轮询的过程权重可能变化
 * Integer currentWeight:当前权重,比对该值大小获取节点
 *   第一次加权轮询时:currentWeight = weight = effectiveWeight
 *   后面每次加权轮询时:currentWeight 的值都会不断变化,其他权重不变
 * Boolean isAvailable:是否存活
 */
public class ServerNode implements Comparable<ServerNode>{
    private String ip;
    private final Integer weight;
    private Integer effectiveWeight;
    private Integer currentWeight;
    private Boolean isAvailable;

    public ServerNode(String ip, Integer weight){
        this(ip,weight,true);
    }
    public ServerNode(String ip, Integer weight,Boolean isAvailable){
        this.ip = ip;
        this.weight = weight;
        this.effectiveWeight = weight;
        this.currentWeight = weight;
        this.isAvailable = isAvailable;
    }

    public String getIp() {
        return ip;
    }

    public void setIp(String ip) {
        this.ip = ip;
    }

    public Integer getWeight() {
        return weight;
    }

    public Integer getEffectiveWeight() {
        return effectiveWeight;
    }

    public void setEffectiveWeight(Integer effectiveWeight) {
        this.effectiveWeight = effectiveWeight;
    }

    public Integer getCurrentWeight() {
        return currentWeight;
    }

    public void setCurrentWeight(Integer currentWeight) {
        this.currentWeight = currentWeight;
    }

    public Boolean isAvailable() {
        return isAvailable;
    }
    public void setIsAvailable(Boolean isAvailable){
        this.isAvailable = isAvailable;
    }

    // 每成功一次,恢复有效权重1,不超过配置的起始权重
    public void onInvokeSuccess(){
        if(effectiveWeight < weight) effectiveWeight++;
    }
    // 每失败一次,有效权重减少1,无底线的减少
    public void onInvokeFault(){
        effectiveWeight--;
    }

    @Override
    public int compareTo(ServerNode node) {
        return currentWeight > node.currentWeight ? 1 : (currentWeight.equals(node.currentWeight) ? 0 : -1);
    }

    @Override
    public String toString() {
        return "{ip='" + ip + "', weight=" + weight + ", effectiveWeight=" + effectiveWeight
                + ", currentWeight=" + currentWeight + ", isAvailable=" + isAvailable + "}";
    }
}

2.2.平滑轮询算法降权和提权

package com.yty.loadbalancingalgorithm.wrr;

import java.util.ArrayList;
import java.util.List;

/**
 * 加权轮询算法:加入存活状态,降权使宕机权重降低,从而不会被选中
 */
public class WeightedRoundRobinAvailable {

    private static List<ServerNode> serverNodes = new ArrayList<>();
    // 准备模拟数据
    static {
        serverNodes.add(new ServerNode("192.168.1.101",1));// 默认为true
        serverNodes.add(new ServerNode("192.168.1.102",3,false));
        serverNodes.add(new ServerNode("192.168.1.103",2));
    }

    /**
     * 按照当前权重(currentWeight)最大值获取IP
     * @return ServerNode
     */
    public ServerNode selectNode(){
        if (serverNodes.size() <= 0) return null;
        if (serverNodes.size() == 1)
            return (serverNodes.get(0).isAvailable()) ? serverNodes.get(0) : null;

        // 权重之和
        Integer totalWeight = 0;
        ServerNode nodeOfMaxWeight = null; // 保存轮询选中的节点信息
        synchronized (serverNodes){
            StringBuffer sb1 = new StringBuffer();
            StringBuffer sb2 = new StringBuffer();
            sb1.append(Thread.currentThread().getName()+"==加权轮询--[当前权重]值的变化:"+printCurrentWeight(serverNodes));
            // 有限权重总和可能发生变化
            for(ServerNode serverNode : serverNodes){
                totalWeight += serverNode.getEffectiveWeight();
            }

            // 选出当前权重最大的节点
            ServerNode tempNodeOfMaxWeight = serverNodes.get(0);
            for (ServerNode serverNode : serverNodes) {
                if (serverNode.isAvailable()) {
                    serverNode.onInvokeSuccess();//提权
                    sb2.append(Thread.currentThread().getName()+"==[正常节点]:"+serverNode+"\n");
                } else {
                    serverNode.onInvokeFault();//降权
                    sb2.append(Thread.currentThread().getName()+"==[宕机节点]:"+serverNode+"\n");
                }

                tempNodeOfMaxWeight = tempNodeOfMaxWeight.compareTo(serverNode) > 0 ? tempNodeOfMaxWeight : serverNode;
            }
            // 必须new个新的节点实例来保存信息,否则引用指向同一个堆实例,后面的set操作将会修改节点信息
            nodeOfMaxWeight = new ServerNode(tempNodeOfMaxWeight.getIp(),tempNodeOfMaxWeight.getWeight(),tempNodeOfMaxWeight.isAvailable());
            nodeOfMaxWeight.setEffectiveWeight(tempNodeOfMaxWeight.getEffectiveWeight());
            nodeOfMaxWeight.setCurrentWeight(tempNodeOfMaxWeight.getCurrentWeight());

            // 调整当前权重比:按权重(effectiveWeight)的比例进行调整,确保请求分发合理。
            tempNodeOfMaxWeight.setCurrentWeight(tempNodeOfMaxWeight.getCurrentWeight() - totalWeight);
            sb1.append(" -> "+printCurrentWeight(serverNodes));

            serverNodes.forEach(serverNode -> serverNode.setCurrentWeight(serverNode.getCurrentWeight()+serverNode.getEffectiveWeight()));

            sb1.append(" -> "+printCurrentWeight(serverNodes));
            System.out.print(sb2);  //所有节点的当前信息
            System.out.println(sb1); //打印当前权重变化过程
        }
        return nodeOfMaxWeight;
    }

    // 格式化打印信息
    private String printCurrentWeight(List<ServerNode> serverNodes){
        StringBuffer stringBuffer = new StringBuffer("[");
        serverNodes.forEach(node -> stringBuffer.append(node.getCurrentWeight()+",") );
        return stringBuffer.substring(0, stringBuffer.length() - 1) + "]";
    }

    // 并发测试:两个线程循环获取节点
    public static void main(String[] args) throws InterruptedException {
        // 循环次数
        int loop = 18;

        new Thread(() -> {
            WeightedRoundRobinAvailable weightedRoundRobin1 = new WeightedRoundRobinAvailable();
            for(int i=1;i<=loop;i++){
                ServerNode serverNode = weightedRoundRobin1.selectNode();
                System.out.println(Thread.currentThread().getName()+"==第"+i+"次轮询选中[当前权重最大]的节点:" + serverNode + "\n");
            }
        }).start();
        //
        new Thread(() -> {
            WeightedRoundRobinAvailable weightedRoundRobin2 = new WeightedRoundRobinAvailable();
            for(int i=1;i<=loop;i++){
                ServerNode serverNode = weightedRoundRobin2.selectNode();
                System.out.println(Thread.currentThread().getName()+"==第"+i+"次轮询选中[当前权重最大]的节点:" + serverNode + "\n");
            }
        }).start();

        //main 线程睡了一下,再偷偷把 所有宕机 拉起来:模拟服务器恢复正常
        Thread.sleep(5);
        for (ServerNode serverNode:serverNodes){
            if(!serverNode.isAvailable())
                serverNode.setIsAvailable(true);
        }
    }
}

3.分析结果

执行结果:将执行结果的前中后四次抽出来分析

Thread-0==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=1, isAvailable=true}

Thread-0==[宕机节点]:{ip='192.168.1.102', weight=3, effectiveWeight=2, currentWeight=3, isAvailable=false}

Thread-0==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}

Thread-0==加权轮询--[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,-1,4]

Thread-0==第1次轮询选中[当前权重最大]的节点:{ip='192.168.1.102', weight=3, effectiveWeight=2, currentWeight=3, isAvailable=false}

……

Thread-1==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=6, isAvailable=true}

Thread-1==[宕机节点]:{ip='192.168.1.102', weight=3, effectiveWeight=-7, currentWeight=-21, isAvailable=false}

Thread-1==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}

Thread-1==加权轮询--[当前权重]值的变化:[6,-21,12] -> [6,-21,15] -> [7,-28,17]

Thread-1==第5次轮询选中[当前权重最大]的节点:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}

……

Thread-0==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=13, isAvailable=true}

Thread-0==[正常节点]:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=-19, isAvailable=true}

Thread-0==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}

Thread-0==加权轮询--[当前权重]值的变化:[13,-19,12] -> [7,-19,12] -> [8,-16,14]

Thread-0==第15次轮询选中[当前权重最大]的节点:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=13, isAvailable=true}

……

Thread-1==[正常节点]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=2, isAvailable=true}

Thread-1==[正常节点]:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=2, isAvailable=true}

Thread-1==[正常节点]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}

Thread-1==加权轮询--[当前权重]值的变化:[2,2,2] -> [2,2,-4] -> [3,5,-2]

Thread-1==第18次轮询选中[当前权重最大]的节点:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}

分析

一开始权重最高的节点虽然是宕机了,但是还是会被选中并返回;

“有效权重总和” 和 “当前权重总和”都减少了1,因为设置轮询到失败节点,都会自减1;

到第5次轮询时,当前权重已经变成了[7,-28,17],可以看出宕机节点越往后当前权重越小,所以后面根本不会再选中宕机节点,虽然没剔除故障节点,但却起到不分配宕机节点

到第15次轮询时,有效权重已经恢复起始值,当前权重变为[8,-16,14],当前权重只能慢慢恢复,并不是节点一正常就立即恢复宕机过的节点,起到对故障节点的缓冲恢复(故障过的节点可能还存在问题);

最后1次轮询时,因为没有宕机节点,所以有效权重不变,当前权重已经恢复[3,5,-2],如果再轮询一次,那就会访问到一开始故障的节点了。

4.结论

降权起到缓慢“剔除”宕机节点的效果;提权起到缓冲恢复宕机节点的效果。

对比上一篇文章可以看到:

当前权重(currentWeight):针对的是节点的选择,受有效权重影响,起到缓慢“剔除”宕机节点和缓冲恢复宕机节点的效果,当前权重最高就会被选择;

有效权重(effectiveWeight):针对的是权重的变化,也即是降权和提权,降权/提权只会直接操作有效权重;

权重(weight):针对的是存储起始配置,限定有效权重的提权。

到此这篇关于Java实现平滑加权轮询算法之降权和提权的文章就介绍到这了,更多相关Java平滑加权轮询降权和提权内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java负载均衡算法实现之轮询和加权轮询

    目录 1.普通轮询算法 2.加权轮询算法 2.1.实现方式一 2.2.实现方式二(重点难点) 2.2.1.概述 2.2.2.举个例子理解算法 2.2.3.代码实现 总结 1.普通轮询算法 轮询(Round Robin,RR)是依次将用户的访问请求,按循环顺序分配到web服务节点上,从1开始到最后一台服务器节点结束,然后再开始新一轮的循环.这种算法简单,但是没有考虑到每台节点服务器的具体性能,请求分发往往不均衡. 代码实现: /** * 普通轮询算法 */public class RoundRob

  • Java实现平滑加权轮询算法之降权和提权详解

    目录 前言 1.两个关键点 2.代码实现 2.1.服务节点类 2.2.平滑轮询算法降权和提权 3.分析结果 4.结论 前言 上一篇讲了普通轮询.加权轮询的两种实现方式,重点讲了平滑加权轮询算法,并在文末留下了悬念:节点出现分配失败时降低有效权重值:成功时提高有效权重值(但不能大于weight值). 本文在平滑加权轮询算法的基础上讲,还没弄懂的可以看上一篇文章. 现在来模拟实现:平滑加权轮询算法的降权和提权 1.两个关键点 节点宕机时,降低有效权重值: 节点正常时,提高有效权重值(但不能大于wei

  • C#实现Nginx平滑加权轮询算法

    本文实例为大家分享了C#实现Nginx平滑加权轮询算法的具体代码,供大家参考,具体内容如下 代码很简单,算法很经典! 1. 定义实体类 public struct ServerConfig { //初始权重 public int Weight {get;set;} //当前权重 public int Current {get;set;} //服务名称 public string Name {get;set;} } 2. 算法 public static int NextServerIndex(S

  • Go 实现 Nginx 加权轮询算法的方法步骤

    目录 一,Nginx 负载均衡的轮询 (round-robin) 1. nginx 中的配置 2. 简单介绍 3. 特点 4. 实现 (这里使用golang模拟实现) 5. 测试 二,Nginx 负载均衡的加权轮询 (weighted-round-robin) 1. nginx 配置 2. 加权算法简介-特点 3. 算法说明 4. 简单举例 5. 代码实现 6. 测试验证 最近在看一些 getway 相关的资料,发现有关 Nginx 负载均衡的算法有点多,但是有点乱,所以整理下...如有不对地方

  • Thinkphp结合AJAX长轮询实现PC与APP推送详解

    前言 本文主要给大家介绍的关于Thinkphp结合AJAX长轮询实现PC与APP推送的相关内容,分享出来供大家参考学习,话不多说,来一起看看详细的介绍. 实现逻辑 某个操作(比如新建一条公告)后,触发同时推送消息给APP或是移动WEB的所有用户或指定用户. 不论性能,总还是有人会用到吧,实现如下(基于Thinkphp5消息推送): PHP长轮询 /* * long轮询 API查询接口 */ public function id_log() { if (request()->isPost()) {

  • 详解Nginx轮询算法底层实现的方法

    轮询算法简介 在工作中很多人都使用到了nginx,对nginx得配置也是烂熟于心,今天我主要想介绍一下nginx轮询算法得几种底层实现方式. 简单轮询算法 这种算法比较简单,举个例子就是你有三台服务器 第一台服务器 192.168.1.1 第二台服务器 192.168.1.2 第三台服务器 192.168.1.3 第一个请求过来之后默认访问第一台,第二个请求过来访问第二台,第三次请求过来访问第三台,第四次请求过来访问第一台,以此类推.以下是我代码实现简单得算法: public class Sim

  • PHP实现负载均衡的加权轮询方法分析

    本文实例讲述了PHP实现负载均衡的加权轮询方法.分享给大家供大家参考,具体如下: 1. 负载均衡算法有哪些? 轮询法:将请求按顺序轮流地分配到后端服务器上,它均衡地对待后端的每一台服务器,而不关心服务器实际的连接数和当前的系统负载. 随机法:通过系统的随机算法,根据后端服务器的列表大小值来随机选取其中的一台服务器进行访问. 源地址哈希法:根据获取客户端的IP地址,通过哈希函数计算得到一个数值,用该数值对服务器列表的大小进行取模运算,得到的结果便是客服端要访问服务器的序号.采用源地址哈希法进行负载

  • c# 实现轮询算法实例代码

    c# 轮询算法 这两天做东西,业务上有个特殊的需求,在用户访问页面的时候,针对某一行代码进行控制,按照概率来进行显示,我做的是针对当前页面的曝光进行处理,曝光代码是第三方的,页面上只要有这段代码就算是执行了这段曝光代码,所以才写了这个轮询的一个方法,这个方法可以根据自己的需求修改,下面我把这个方法全部帖出来: CacheSlidingExpirationHour:时间,缓存时间2小时 CountdownCurrentIndexCacheName:缓存名称 log:日志 m_objCountdow

  • Golang加权轮询负载均衡的实现

    目录 实现加权轮询负载均衡思路 加权轮询负载均衡代码 测试代码 实现加权轮询负载均衡思路 代码实现一个加权负载均衡 Weight            初始化时对节点约定的权重 currentWeight     节点临时权重,每轮都会变化 effectiveWeight   节点有效权重,默认与Weight相同 totalWeight       所有节点有效权重之和:sum(effectiveWeight) 代码实现一个加权负载均衡 currentWeight = currentWeight

  • 关于SpringCloud Ribbon替换轮询算法问题

    Spring Cloud Ribbon是基于Netlix Ribbon实现的一套客户端负载均衡的工具. 简单的说,Ribbon是Netflix发布的开源项. Ribbon负载均衡调用 概述 Spring Cloud Ribbon是基于Netlix Ribbon实现的一套客户端负载均衡的工具.简单的说,Ribbon是Netflix发布的开源项目, 主要功能是提供客户端的软件负载均衡算法和服务调用.Ribbon客户端组件提供一系列完善的配置项如连接超时,重试等.简单的说,就是在配置文件中列出Load

随机推荐