java算法之余弦相似度计算字符串相似率

概述

功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中。这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻

或者一样的新闻,那就不存储到数据库中。(因为有网站会去引用其它网站新闻,或者把其它网站新闻拿过来稍微改下内容就发布到自己网站中)。

解析方案:最终就是采用余弦相似度算法,来计算两个新闻正文的相似度。现在自己写一篇博客总结下。

一、理论知识

先推荐一篇博客,对于余弦相似度算法的理论讲的比较清晰,我们也是按照这个方式来计算相似度的。网址:相似度算法之余弦相似度。

1、说重点

我这边先把计算两个字符串的相似度理论知识再梳理一遍。

(1)首先是要明白通过向量来计算相识度公式。

(2)明白:余弦值越接近1,也就是两个向量越相似,这就叫"余弦相似性",
余弦值越接近0,也就是两个向量越不相似,也就是这两个字符串越不相似。

2、案例理论知识

举一个例子来说明,用上述理论计算文本的相似性。为了简单起见,先从句子着手。

句子A:这只皮靴号码大了。那只号码合适。

句子B:这只皮靴号码不小,那只更合适。

怎样计算上面两句话的相似程度?

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

第一步,分词。

句子A:这只/皮靴/号码/大了。那只/号码/合适。

句子B:这只/皮靴/号码/不/小,那只/更/合适。

第二步,计算词频。(也就是每个词语出现的频率)

句子A:这只1,皮靴1,号码2,大了1。那只1,合适1,不0,小0,更0

句子B:这只1,皮靴1,号码1,大了0。那只1,合适1,不1,小1,更1

第三步,写出词频向量。

句子A:(1,1,2,1,1,1,0,0,0)

句子B:(1,1,1,0,1,1,1,1,1)

第四步:运用上面的公式:计算如下:

计算结果中夹角的余弦值为0.81非常接近于1,所以,上面的句子A和句子B是基本相似的

二、实际开发案例

我把我们实际开发过程中字符串相似率计算代码分享出来。

1、pom.xml

展示一些主要jar包

<!--结合操作工具包-->
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-lang3</artifactId>
    <version>3.5</version>
</dependency>
<!--bean实体注解工具包-->
   <dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
</dependency>
<!--汉语言包,主要用于分词-->
<dependency>
    <groupId>com.hankcs</groupId>
    <artifactId>hanlp</artifactId>
    <version>portable-1.6.5</version>
</dependency>

2、main方法

/**
 * 计算两个字符串的相识度
 */
public class Similarity {

    public static final  String content1="今天小小和爸爸一起去摘草莓,小小说今天的草莓特别的酸,而且特别的小,关键价格还贵";

    public static final  String content2="今天小小和妈妈一起去草原里采草莓,今天的草莓味道特别好,而且价格还挺实惠的";

    public static void main(String[] args) {

        double  score=CosineSimilarity.getSimilarity(content1,content2);
        System.out.println("相似度:"+score);

        score=CosineSimilarity.getSimilarity(content1,content1);
        System.out.println("相似度:"+score);
    }

}

先看运行结果:

通过运行结果得出:

(1)第一次比较相似率为:0.772853 (说明这两条句子还是挺相似的),第二次比较相似率为:1.0 (说明一模一样)。

(2)我们可以看到这个句子的分词效果,后面是词性。

3、Tokenizer(分词工具类)

import com.hankcs.hanlp.HanLP;
import com.hankcs.hanlp.seg.common.Term;
import java.util.List;
import java.util.stream.Collectors;

/**
 * 中文分词工具类*/
public class Tokenizer {

    /**
     * 分词*/
    public static List<Word> segment(String sentence) {

        //1、 采用HanLP中文自然语言处理中标准分词进行分词
        List<Term> termList = HanLP.segment(sentence);

        //上面控制台打印信息就是这里输出的
        System.out.println(termList.toString());

        //2、重新封装到Word对象中(term.word代表分词后的词语,term.nature代表改词的词性)
        return termList.stream().map(term -> new Word(term.word, term.nature.toString())).collect(Collectors.toList());
    }
}

4、Word(封装分词结果)

这里面真正用到的其实就词名和权重。

import lombok.Data;

import java.util.Objects;

/**
 * 封装分词结果*/
@Data
public class Word implements Comparable {

    // 词名
    private String name;
    // 词性
    private String pos;

    // 权重,用于词向量分析
    private Float weight;

    public Word(String name, String pos) {
        this.name = name;
        this.pos = pos;
    }

    @Override
    public int hashCode() {
        return Objects.hashCode(this.name);
    }

    @Override
    public boolean equals(Object obj) {
        if (obj == null) {
            return false;
        }
        if (getClass() != obj.getClass()) {
            return false;
        }
        final Word other = (Word) obj;
        return Objects.equals(this.name, other.name);
    }

    @Override
    public String toString() {
        StringBuilder str = new StringBuilder();
        if (name != null) {
            str.append(name);
        }
        if (pos != null) {
            str.append("/").append(pos);
        }

        return str.toString();
    }

    @Override
    public int compareTo(Object o) {
        if (this == o) {
            return 0;
        }
        if (this.name == null) {
            return -1;
        }
        if (o == null) {
            return 1;
        }
        if (!(o instanceof Word)) {
            return 1;
        }
        String t = ((Word) o).getName();
        if (t == null) {
            return 1;
        }
        return this.name.compareTo(t);
    }
}

5、CosineSimilarity(相似率具体实现工具类)

import com.jincou.algorithm.tokenizer.Tokenizer;
import com.jincou.algorithm.tokenizer.Word;

import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.util.CollectionUtils;
import java.math.BigDecimal;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * 判定方式:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度 余弦夹角原理: 向量a=(x1,y1),向量b=(x2,y2) similarity=a.b/|a|*|b| a.b=x1x2+y1y2
 * |a|=根号[(x1)^2+(y1)^2],|b|=根号[(x2)^2+(y2)^2]*/
public class CosineSimilarity {
    protected static final Logger LOGGER = LoggerFactory.getLogger(CosineSimilarity.class);

    /**
     * 1、计算两个字符串的相似度
     */
    public static double getSimilarity(String text1, String text2) {

        //如果wei空,或者字符长度为0,则代表完全相同
        if (StringUtils.isBlank(text1) && StringUtils.isBlank(text2)) {
            return 1.0;
        }
        //如果一个为0或者空,一个不为,那说明完全不相似
        if (StringUtils.isBlank(text1) || StringUtils.isBlank(text2)) {
            return 0.0;
        }
        //这个代表如果两个字符串相等那当然返回1了(这个我为了让它也分词计算一下,所以注释掉了)
//        if (text1.equalsIgnoreCase(text2)) {
//            return 1.0;
//        }
        //第一步:进行分词
        List<Word> words1 = Tokenizer.segment(text1);
        List<Word> words2 = Tokenizer.segment(text2);

        return getSimilarity(words1, words2);
    }

    /**
     * 2、对于计算出的相似度保留小数点后六位
     */
    public static double getSimilarity(List<Word> words1, List<Word> words2) {

        double score = getSimilarityImpl(words1, words2);

        //(int) (score * 1000000 + 0.5)其实代表保留小数点后六位 ,因为1034234.213强制转换不就是1034234。对于强制转换添加0.5就等于四舍五入
        score = (int) (score * 1000000 + 0.5) / (double) 1000000;

        return score;
    }

    /**
     * 文本相似度计算 判定方式:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度 余弦夹角原理: 向量a=(x1,y1),向量b=(x2,y2) similarity=a.b/|a|*|b| a.b=x1x2+y1y2
     * |a|=根号[(x1)^2+(y1)^2],|b|=根号[(x2)^2+(y2)^2]
     */
    public static double getSimilarityImpl(List<Word> words1, List<Word> words2) {

        // 向每一个Word对象的属性都注入weight(权重)属性值
        taggingWeightByFrequency(words1, words2);

        //第二步:计算词频
        //通过上一步让每个Word对象都有权重值,那么在封装到map中(key是词,value是该词出现的次数(即权重))
        Map<String, Float> weightMap1 = getFastSearchMap(words1);
        Map<String, Float> weightMap2 = getFastSearchMap(words2);

        //将所有词都装入set容器中
        Set<Word> words = new HashSet<>();
        words.addAll(words1);
        words.addAll(words2);

        AtomicFloat ab = new AtomicFloat();// a.b
        AtomicFloat aa = new AtomicFloat();// |a|的平方
        AtomicFloat bb = new AtomicFloat();// |b|的平方

        // 第三步:写出词频向量,后进行计算
        words.parallelStream().forEach(word -> {
            //看同一词在a、b两个集合出现的此次
            Float x1 = weightMap1.get(word.getName());
            Float x2 = weightMap2.get(word.getName());
            if (x1 != null && x2 != null) {
                //x1x2
                float oneOfTheDimension = x1 * x2;
                //+
                ab.addAndGet(oneOfTheDimension);
            }
            if (x1 != null) {
                //(x1)^2
                float oneOfTheDimension = x1 * x1;
                //+
                aa.addAndGet(oneOfTheDimension);
            }
            if (x2 != null) {
                //(x2)^2
                float oneOfTheDimension = x2 * x2;
                //+
                bb.addAndGet(oneOfTheDimension);
            }
        });
        //|a| 对aa开方
        double aaa = Math.sqrt(aa.doubleValue());
        //|b| 对bb开方
        double bbb = Math.sqrt(bb.doubleValue());

        //使用BigDecimal保证精确计算浮点数
        //double aabb = aaa * bbb;
        BigDecimal aabb = BigDecimal.valueOf(aaa).multiply(BigDecimal.valueOf(bbb));

        //similarity=a.b/|a|*|b|
        //divide参数说明:aabb被除数,9表示小数点后保留9位,最后一个表示用标准的四舍五入法
        double cos = BigDecimal.valueOf(ab.get()).divide(aabb, 9, BigDecimal.ROUND_HALF_UP).doubleValue();
        return cos;
    }

    /**
     * 向每一个Word对象的属性都注入weight(权重)属性值
     */
    protected static void taggingWeightByFrequency(List<Word> words1, List<Word> words2) {
        if (words1.get(0).getWeight() != null && words2.get(0).getWeight() != null) {
            return;
        }
        //词频统计(key是词,value是该词在这段句子中出现的次数)
        Map<String, AtomicInteger> frequency1 = getFrequency(words1);
        Map<String, AtomicInteger> frequency2 = getFrequency(words2);

        //如果是DEBUG模式输出词频统计信息
//        if (LOGGER.isDebugEnabled()) {
//            LOGGER.debug("词频统计1:\n{}", getWordsFrequencyString(frequency1));
//            LOGGER.debug("词频统计2:\n{}", getWordsFrequencyString(frequency2));
//        }
        // 标注权重(该词出现的次数)
        words1.parallelStream().forEach(word -> word.setWeight(frequency1.get(word.getName()).floatValue()));
        words2.parallelStream().forEach(word -> word.setWeight(frequency2.get(word.getName()).floatValue()));
    }

    /**
     * 统计词频
     * @return 词频统计图
     */
    private static Map<String, AtomicInteger> getFrequency(List<Word> words) {

        Map<String, AtomicInteger> freq = new HashMap<>();
        //这步很帅哦
        words.forEach(i -> freq.computeIfAbsent(i.getName(), k -> new AtomicInteger()).incrementAndGet());
        return freq;
    }

    /**
     * 输出:词频统计信息
     */
    private static String getWordsFrequencyString(Map<String, AtomicInteger> frequency) {
        StringBuilder str = new StringBuilder();
        if (frequency != null && !frequency.isEmpty()) {
            AtomicInteger integer = new AtomicInteger();
            frequency.entrySet().stream().sorted((a, b) -> b.getValue().get() - a.getValue().get()).forEach(
                    i -> str.append("\t").append(integer.incrementAndGet()).append("、").append(i.getKey()).append("=")
                            .append(i.getValue()).append("\n"));
        }
        str.setLength(str.length() - 1);
        return str.toString();
    }

    /**
     * 构造权重快速搜索容器
     */
    protected static Map<String, Float> getFastSearchMap(List<Word> words) {
        if (CollectionUtils.isEmpty(words)) {
            return Collections.emptyMap();
        }
        Map<String, Float> weightMap = new ConcurrentHashMap<>(words.size());

        words.parallelStream().forEach(i -> {
            if (i.getWeight() != null) {
                weightMap.put(i.getName(), i.getWeight());
            } else {
                LOGGER.error("no word weight info:" + i.getName());
            }
        });
        return weightMap;
    }

}

这个具体实现代码因为思维很紧密所以有些地方写的比较绕,同时还手写了AtomicFloat原子类。

6、AtomicFloat原子类

import java.util.concurrent.atomic.AtomicInteger;

/**
 * jdk没有AtomicFloat,写一个
 */
public class AtomicFloat extends Number {

    private AtomicInteger bits;

    public AtomicFloat() {
        this(0f);
    }

    public AtomicFloat(float initialValue) {
        bits = new AtomicInteger(Float.floatToIntBits(initialValue));
    }

    //叠加
    public final float addAndGet(float delta) {
        float expect;
        float update;
        do {
            expect = get();
            update = expect + delta;
        } while (!this.compareAndSet(expect, update));

        return update;
    }

    public final float getAndAdd(float delta) {
        float expect;
        float update;
        do {
            expect = get();
            update = expect + delta;
        } while (!this.compareAndSet(expect, update));

        return expect;
    }

    public final float getAndDecrement() {
        return getAndAdd(-1);
    }

    public final float decrementAndGet() {
        return addAndGet(-1);
    }

    public final float getAndIncrement() {
        return getAndAdd(1);
    }

    public final float incrementAndGet() {
        return addAndGet(1);
    }

    public final float getAndSet(float newValue) {
        float expect;
        do {
            expect = get();
        } while (!this.compareAndSet(expect, newValue));

        return expect;
    }

    public final boolean compareAndSet(float expect, float update) {
        return bits.compareAndSet(Float.floatToIntBits(expect), Float.floatToIntBits(update));
    }

    public final void set(float newValue) {
        bits.set(Float.floatToIntBits(newValue));
    }

    public final float get() {
        return Float.intBitsToFloat(bits.get());
    }

    @Override
    public float floatValue() {
        return get();
    }

    @Override
    public double doubleValue() {
        return (double) floatValue();
    }

    @Override
    public int intValue() {
        return (int) get();
    }

    @Override
    public long longValue() {
        return (long) get();
    }

    @Override
    public String toString() {
        return Float.toString(get());
    }
}

三、总结

把大致思路再捋一下:

(1)先分词:分词当然要按一定规则,不然随便分那也没有意义,那这里通过采用HanLP中文自然语言处理中标准分词进行分词。

(2)统计词频:就统计上面词出现的次数。

(3)通过每一个词出现的次数,变成一个向量,通过向量公式计算相似率。

以上就是java算法之余弦相似度计算字符串相似率的详细内容,更多关于java算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • java 实现KMP算法

    KMP算法是一种神奇的字符串匹配算法,在对 超长字符串 进行模板匹配的时候比暴力匹配法的效率会高不少.接下来我们从思路入手理解KMP算法. 在对字符串进行匹配的时候我们最容易想到的就是一个个匹配,类似下面这种: 换成Java代码就是: public static boolean bfSearch(String pattern,String txt){ if (txt.length() < pattern.length()) return false; for (int i = 0; i < t

  • Java多种经典排序算法(含动态图)

    算法分析 一个排序算法的好坏,一般是通过下面几个关键信息来分析的,下面先介绍一下这几个关键信息,然后再将常见的排序算法的这些关键信息统计出来. 名词介绍 时间复杂度:指对数据操作的次数(或是简单的理解为某段代码的执行次数).举例:O(1):常数时间复杂度:O(log n):对数时间复杂度:O(n):线性时间复杂度. 空间复杂度:某段代码每次执行时需要开辟的内存大小. 内部排序:不依赖外部的空间,直接在数据内部进行排序: 外部排序:数据的排序,不能通过内部空间来完成,需要依赖外部空间. 稳定排序:

  • Java基础之八大排序算法

    前言 关系 复杂度 一.直接插入排序 基本思想: 将新的数据插入已经排好的数据列中. 将第一个和第二个数排序,构成有序数列 然后将第三个数插进去,构成新的有序数列,后面的数重复这个步骤 算法描述 1.设定插入的次数,即是循环次数,for(int i=1;i<length;i++),1个数的那次不用插入. 2.设定插入的数和得到的已经排好的序列的最后一个数,insertNum和j=i-1. 3.从最后一个数向前开始循环,如果插入数小于当前数就将当前数向前移动一位 4.将当前位置放置到空的位置,即j

  • 详解Java分布式系统中一致性哈希算法

    业务场景 近年来B2C.O2O等商业概念的提出和移动端的发展,使得分布式系统流行了起来.分布式系统相对于单系统,解决了流量大.系统高可用和高容错等问题.功能强大也意味着实现起来需要更多技术的支持.例如系统访问层的负载均衡,缓存层的多实例主从复制备份,数据层的分库分表等. 我们以负载均衡为例,常见的负载均衡方法有很多,但是它们的优缺点也都很明显: 随机访问策略.系统随机访问,缺点:可能造成服务器负载压力不均衡,俗话讲就是撑的撑死,饿的饿死. 轮询策略.请求均匀分配,如果服务器有性能差异,则无法实现

  • Java算法之时间复杂度和空间复杂度的概念和计算

    一.算法效率 算法效率分析分为两种:第一种是时间效率,第二种是空间效率.时间效率被称为时间复杂度,而空间效率被称作空间复杂度. 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间. 在计算机发展的早期,计算机的存储容量很小.所以对空间复杂度很是在乎.但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度.所以我们如今已经不需要再特别关注一个算法的空间复杂度.因为现在的内存不像以前那么贵,所以经常听到过牺牲空间来换取时间的说法 二.时间复杂度 2.1

  • java实现国产sm4加密算法

    前言 今天给大家带来一个国产SM4加密解密算法的java后端解决方案,代码完整,可以直接使用,希望给大家带来帮助,尤其是做政府系统的开发人员,可以直接应用到项目中进行加密解密. 画重点!是SM4哦,不是SM.哈哈,各位要在知识里遨游,不要想歪.正文开始~ 国产SM4加密解密算法概念介绍 SMS4算法是在国内广泛使用的WAPI无线网络标准中使用的加密算法,是一种32轮的迭代非平衡Feistel结构的分组加密算法,其密钥长度和分组长度均为128.SMS4算法的加解密过程中使用的算法是完全相同的,唯一

  • java实现同态加密算法的实例代码

    什么是同态加密? 同态加密是上世纪七十年代就被提出的一个开放问题,旨在不暴露数据的情况下完成对数据的处理,关注的是数据处理安全. 想象一下这样一个场景,作为一名满怀理想的楼二代,你每天过着枯燥乏味的收租生活,希望摆脱世俗的枷锁.铜臭的苟且去追求诗与远方. 你需要雇一个代理人去承担收租的粗活,但又不希望其窥探你每月躺赚的收入.于是,你请高人打造了一套装备,既能保证代理人顺利完成收租,又不会泄露收入信息. 这套装备包括信封.胶水.皮夹和神奇剪刀,每一样东西都有奇特的功能: 信封一旦用胶水密封,只有神

  • Java实现的计算稀疏矩阵余弦相似度示例

    本文实例讲述了Java实现的计算稀疏矩阵余弦相似度功能.分享给大家供大家参考,具体如下: import java.util.HashMap; public class MyUDF{ /** * UDF Evaluate接口 * * UDF在记录层面上是一对一,字段上是一对一或多对一. Evaluate方法在每条记录上被调用一次,输入为一个或多个字段,输出为一个字段 */ public Double evaluate(String a, String b) { // TODO: 请按需要修改参数和

  • java中gc算法实例用法

    在我们对gc中的算法有基本概念理解后,要把算法的理念实现还需要依托实际垃圾收集器的使用.因为光靠一些简单的原理不足以支撑整个程序的运行,在回收机制上有专门的收集器.下面我们就垃圾收集器的概念.使用注意事项.收集器图解进行介绍,然后带来两种常见的垃圾收集器供大家参考. 1.概念 垃圾收集器时之前列举的垃圾收集算法的具体实现. 2.注意事项 每一个回收器都存在Stop The World 的问题,只不过各个回收器在Stop The World 时间优化程度.算法的不同,可根据自身需求选择适合的回收器

  • java算法之余弦相似度计算字符串相似率

    概述 功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中.这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻 或者一样的新闻,那就不存储到数据库中.(因为有网站会去引用其它网站新闻,或者把其它网站新闻拿过来稍微改下内容就发布到自己网站中). 解析方案:最终就是采用余弦相似度算法,来计算两个新闻正文的相似度.现在自己写一篇博客总结下. 一.理论知识 先推荐一篇博客,对于余弦相似度算法的理论讲的比较清晰,我们也是按照这个方式来计算相似度的.网址:相似度算法之余弦相

  • 剑指Offer之Java算法习题精讲数组与字符串

    题目一  解法 class Solution { public int findLengthOfLCIS(int[] nums) { if(nums.length==1) return 1; int fast = 1; int tmp = 1; int max = Integer.MIN_VALUE; while(fast<nums.length){ if(nums[fast]>nums[fast-1]){ tmp++; max = Math.max(max,tmp); }else{ max

  • 剑指Offer之Java算法习题精讲数组与字符串题

    题目一 解法 class Solution { public int thirdMax(int[] nums) { Arrays.sort(nums); if(nums.length<3){ return nums[nums.length-1]; } int p = 1; for(int i =nums.length-2;i>=0;i--){ if(nums[i]==nums[i+1]){ }else{ ++p; if(p==3){ return nums[i]; } } } return n

  • 剑指Offer之Java算法习题精讲链表与字符串及数组

    题目一 解法 /** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode() {} * ListNode(int val) { this.val = val; } * ListNode(int val, ListNode next) { this.val = val; this.next = next; } * } */ class Soluti

  • PHP数据分析引擎计算余弦相似度算法示例

    本文实例讲述了PHP数据分析引擎计算余弦相似度算法.分享给大家供大家参考,具体如下: 关于余弦相似度的相关介绍可参考百度百科:余弦相似度 <?php /** * 数据分析引擎 * 分析向量的元素 必须和基准向量的元素一致,取最大个数,分析向量不足元素以0填补. * 求出分析向量与基准向量的余弦值 * @author yu.guo@okhqb.com */ /** * 获得向量的模 * @param unknown_type $array 传入分析数据的基准点的N维向量.|eg:array(1,1

  • PHP中计算字符串相似度的函数代码

    similar_text - 计算两个字符串的相似度 int similar_text ( string $first , string $second [, float &$percent ] ) $first 必需.规定要比较的第一个字符串. $second 必需.规定要比较的第二个字符串. $percent 可选.规定供存储百分比相似度的变量名. 两个字符串的相似程度计算依据 Oliver [1993] 的描述进行.注意该实现没有使用 Oliver 虚拟码中的堆栈,但是却进行了递归调用,这

  • Java算法之递归算法计算阶乘

    本文为大家分享的java算法计算阶乘,在学习Java课程时经常会遇到求阶乘问题,今天接跟大家一起探讨一下 代码如下: package com.xu.main; import java.util.Scanner; public class P9 { static long fact(int n) { if(n <= 1) { return 1; } else { return n * fact(n - 1); } } public static void main(String[] args) {

  • C#和SQL实现的字符串相似度计算代码分享

    C#实现: 复制代码 代码如下: #region 计算字符串相似度         /// <summary>         /// 计算字符串相似度         /// </summary>         /// <param name="str1">字符串1</param>         /// <param name="str2">字符串2</param>         ///

随机推荐